Inhibition of sodium-calcium exchange in cardiac sarcolemmal membrane vesicles. 2. Mechanism of inhibition by bepridil. 1988

M L Garcia, and R S Slaughter, and V F King, and G J Kaczorowski
Department of Biochemistry, Merck Institute for Therapeutic Research, Rahway, New Jersey 07065.

Bepridil, an antiarrhythmic agent, inhibits Na-Ca exchange in cardiac sarcolemmal membrane vesicles (Ki = 30 microM) by a novel mechanism, different from that determined for amiloride analogues [Slaughter, R. S., Garcia, M. L., Cragoe, E. J., Jr., Reeves, J. P., & Karczorowski, G. J. (1988) Biochemistry (preceding paper in this issue)]. Bepridil causes partial inhibition of Nai-dependent Ca2+ uptake but complete block of Nao-dependent Ca2+ efflux. Inhibition of Na-Ca exchange is noncompetitive vs Ca2+ but competitive vs Na+ in both K+ and sucrose. Bepridil also blocks Ca-Ca exchange, with or without K+ present. However, K+ has two effects on inhibition: it reduces the potency of bepridil and causes inhibition to become partial. Inhibition of Ca-Ca exchange displays noncompetitive kinetics vs Ca2+ in either sucrose or K+. Dixon analyses of Na-Ca exchange inhibition caused by mixtures of bepridil and amiloride analogues demonstrate that these compounds produce a competitive interaction at a common carrier site that is evident only at low concentrations of amiloride inhibitors. Hill plots of bepridil inhibition of Na-Ca and Ca-Ca exchange display unitary Hill coefficients. These results indicate that bepridil interacts at only one substrate-binding site, the site selective for Na+, where amiloride analogues also preferentially interact. However, unlike amiloride, bepridil does not interact at the common Na+, Ca2+-binding site of the carrier.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D011759 Pyrrolidines Compounds also known as tetrahydropyridines with general molecular formula (CH2)4NH. Tetrahydropyridine,Tetrahydropyridines
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D006352 Heart Ventricles The lower right and left chambers of the heart. The right ventricle pumps venous BLOOD into the LUNGS and the left ventricle pumps oxygenated blood into the systemic arterial circulation. Cardiac Ventricle,Cardiac Ventricles,Heart Ventricle,Left Ventricle,Right Ventricle,Left Ventricles,Right Ventricles,Ventricle, Cardiac,Ventricle, Heart,Ventricle, Left,Ventricle, Right,Ventricles, Cardiac,Ventricles, Heart,Ventricles, Left,Ventricles, Right
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012508 Sarcolemma The excitable plasma membrane of a muscle cell. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Sarcolemmas

Related Publications

M L Garcia, and R S Slaughter, and V F King, and G J Kaczorowski
September 1980, Biochimica et biophysica acta,
M L Garcia, and R S Slaughter, and V F King, and G J Kaczorowski
January 1987, Comparative biochemistry and physiology. C, Comparative pharmacology and toxicology,
M L Garcia, and R S Slaughter, and V F King, and G J Kaczorowski
August 1983, Research communications in chemical pathology and pharmacology,
M L Garcia, and R S Slaughter, and V F King, and G J Kaczorowski
April 1986, The Journal of biological chemistry,
M L Garcia, and R S Slaughter, and V F King, and G J Kaczorowski
September 1989, The Journal of biological chemistry,
M L Garcia, and R S Slaughter, and V F King, and G J Kaczorowski
August 1988, FEBS letters,
M L Garcia, and R S Slaughter, and V F King, and G J Kaczorowski
March 1983, The Journal of biological chemistry,
M L Garcia, and R S Slaughter, and V F King, and G J Kaczorowski
September 1988, The Journal of biological chemistry,
M L Garcia, and R S Slaughter, and V F King, and G J Kaczorowski
February 1979, Proceedings of the National Academy of Sciences of the United States of America,
M L Garcia, and R S Slaughter, and V F King, and G J Kaczorowski
January 1980, Annals of the New York Academy of Sciences,
Copied contents to your clipboard!