Insulin and IGF I receptor-mediated Na+ transport in toad urinary bladders. 1989

B L Blazer-Yost, and M Cox, and R Furlanetto
Department of Medicine, Veterans Administration Medical Center, Philadelphia, Pennsylvania.

We compared the concentration dependence of insulin- and insulin-like growth factor I (IGF I)-stimulated Na+ transport with ligand-receptor affinities in the urinary bladder of the toad Bufo marinus. Threshold, half-maximal, and maximal natriferic concentrations of both peptides were approximately 0.1, 1, and 10 nM, respectively. Amiloride, but not ethyl isopropyl amiloride, (10(-5) M), abolished Na+ transport. Maximal responses to either peptide rendered the tissue insensitive to challenge with the other. Separate insulin and IGF I receptors were identified by equilibrium binding and polyacrylamide gel electrophoresis of cross-linked ligand-receptor complexes. For both peptides, half-maximal binding occurred at 3-10 nM; crossover binding to the other receptor occurred with 10- and 100-fold lower affinity. Thus, in this model "high-resistance" renal epithelium, 1) ligand binding to specific insulin and IGF I receptors stimulates transcellular Na+ flux, 2) the natriferic effects of insulin and IGF I apparently depend on activation of apical Na+ channels rather than Na+-H+ antiporters, and 3) the natriferic pathways activated by insulin and IGF I appear to converge subsequent to ligand-receptor binding but before the final transport ("effector") step(s).

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007334 Insulin-Like Growth Factor I A well-characterized basic peptide believed to be secreted by the liver and to circulate in the blood. It has growth-regulating, insulin-like, and mitogenic activities. This growth factor has a major, but not absolute, dependence on GROWTH HORMONE. It is believed to be mainly active in adults in contrast to INSULIN-LIKE GROWTH FACTOR II, which is a major fetal growth factor. IGF-I,Somatomedin C,IGF-1,IGF-I-SmC,Insulin Like Growth Factor I,Insulin-Like Somatomedin Peptide I,Insulin Like Somatomedin Peptide I
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010920 Placenta A highly vascularized mammalian fetal-maternal organ and major site of transport of oxygen, nutrients, and fetal waste products. It includes a fetal portion (CHORIONIC VILLI) derived from TROPHOBLASTS and a maternal portion (DECIDUA) derived from the uterine ENDOMETRIUM. The placenta produces an array of steroid, protein and peptide hormones (PLACENTAL HORMONES). Placentoma, Normal,Placentome,Placentas,Placentomes
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D011972 Receptor, Insulin A cell surface receptor for INSULIN. It comprises a tetramer of two alpha and two beta subunits which are derived from cleavage of a single precursor protein. The receptor contains an intrinsic TYROSINE KINASE domain that is located within the beta subunit. Activation of the receptor by INSULIN results in numerous metabolic changes including increased uptake of GLUCOSE into the liver, muscle, and ADIPOSE TISSUE. Insulin Receptor,Insulin Receptor Protein-Tyrosine Kinase,Insulin Receptor alpha Subunit,Insulin Receptor beta Subunit,Insulin Receptor alpha Chain,Insulin Receptor beta Chain,Insulin-Dependent Tyrosine Protein Kinase,Receptors, Insulin,Insulin Receptor Protein Tyrosine Kinase,Insulin Receptors
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D001743 Urinary Bladder A musculomembranous sac along the URINARY TRACT. URINE flows from the KIDNEYS into the bladder via the ureters (URETER), and is held there until URINATION. Bladder,Bladder Detrusor Muscle,Detrusor Urinae,Bladder Detrusor Muscles,Bladder, Urinary,Detrusor Muscle, Bladder,Detrusor Muscles, Bladder
D002024 Bufo marinus A species of the true toads, Bufonidae, becoming fairly common in the southern United States and almost pantropical. The secretions from the skin glands of this species are very toxic to animals. Rhinella marina,Toad, Giant,Toad, Marine,Giant Toad,Giant Toads,Marine Toad,Marine Toads,Toads, Giant,Toads, Marine

Related Publications

B L Blazer-Yost, and M Cox, and R Furlanetto
March 1977, The American journal of physiology,
B L Blazer-Yost, and M Cox, and R Furlanetto
March 1979, Biochimica et biophysica acta,
B L Blazer-Yost, and M Cox, and R Furlanetto
January 1982, The Journal of membrane biology,
B L Blazer-Yost, and M Cox, and R Furlanetto
May 1996, Molecular reproduction and development,
B L Blazer-Yost, and M Cox, and R Furlanetto
October 1994, The Journal of membrane biology,
B L Blazer-Yost, and M Cox, and R Furlanetto
July 1980, The Journal of membrane biology,
B L Blazer-Yost, and M Cox, and R Furlanetto
March 1986, Biochimica et biophysica acta,
B L Blazer-Yost, and M Cox, and R Furlanetto
February 1983, The Journal of pharmacology and experimental therapeutics,
B L Blazer-Yost, and M Cox, and R Furlanetto
March 1973, Kidney international,
B L Blazer-Yost, and M Cox, and R Furlanetto
October 1978, The American journal of physiology,
Copied contents to your clipboard!