Molecular analyses of in vivo hprt mutations in human T-lymphocytes. III. Longitudinal study of hprt gene structural alterations and T-cell clonal origins. 1989

J A Nicklas, and T C Hunter, and J P O'Neill, and R J Albertini
Genetics Laboratory, University of Vermont, Burlington 05401.

The hprt clonal assay detects mutations occurring in vivo in the hypoxanthine-guanine phosphoribosyltransferase (hprt) gene of human T-lymphocytes. Analysis of 94 wild-type and 326 hprt mutant clones from 3 normal males was performed using Southern blotting with hprt and T-cell receptor (TCR) gene probes. Gross structural alterations of the hprt gene occurred in approximately 14% of the in vivo derived mutants. Breakpoints were randomly distributed across the gene with one possible mutational "hot spot" observed. Most hprt mutants were independent as judged by TCR gene rearrangement patterns indicating that the measured hprt mutant frequency is a good measure of the actual hprt mutation frequency. However, sibling mutants (generally doublets and triplets except for one nonamer) were detected. Information on the timing in vivo of the hprt mutational events and the persistence in vivo of sibling mutants was also obtained.

UI MeSH Term Description Entries
D007041 Hypoxanthine Phosphoribosyltransferase An enzyme that catalyzes the conversion of 5-phosphoribosyl-1-pyrophosphate and hypoxanthine, guanine, or MERCAPTOPURINE to the corresponding 5'-mononucleotides and pyrophosphate. The enzyme is important in purine biosynthesis as well as central nervous system functions. Complete lack of enzyme activity is associated with the LESCH-NYHAN SYNDROME, while partial deficiency results in overproduction of uric acid. EC 2.4.2.8. Guanine Phosphoribosyltransferase,HPRT,Hypoxanthine-Guanine Phosphoribosyltransferase,IMP Pyrophosphorylase,HGPRT,HPRTase,Hypoxanthine Guanine Phosphoribosyltransferase,Phosphoribosyltransferase, Guanine,Phosphoribosyltransferase, Hypoxanthine,Phosphoribosyltransferase, Hypoxanthine-Guanine,Pyrophosphorylase, IMP
D008297 Male Males
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D002999 Clone Cells A group of genetically identical cells all descended from a single common ancestral cell by mitosis in eukaryotes or by binary fission in prokaryotes. Clone cells also include populations of recombinant DNA molecules all carrying the same inserted sequence. (From King & Stansfield, Dictionary of Genetics, 4th ed) Clones,Cell, Clone,Cells, Clone,Clone,Clone Cell
D005091 Exons The parts of a transcript of a split GENE remaining after the INTRONS are removed. They are spliced together to become a MESSENGER RNA or other functional RNA. Mini-Exon,Exon,Mini Exon,Mini-Exons
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D013601 T-Lymphocytes Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen. T Cell,T Lymphocyte,T-Cells,Thymus-Dependent Lymphocytes,Cell, T,Cells, T,Lymphocyte, T,Lymphocyte, Thymus-Dependent,Lymphocytes, T,Lymphocytes, Thymus-Dependent,T Cells,T Lymphocytes,T-Cell,T-Lymphocyte,Thymus Dependent Lymphocytes,Thymus-Dependent Lymphocyte

Related Publications

J A Nicklas, and T C Hunter, and J P O'Neill, and R J Albertini
January 1989, Environmental and molecular mutagenesis,
J A Nicklas, and T C Hunter, and J P O'Neill, and R J Albertini
January 1992, Environmental and molecular mutagenesis,
J A Nicklas, and T C Hunter, and J P O'Neill, and R J Albertini
January 1986, Mutation research,
J A Nicklas, and T C Hunter, and J P O'Neill, and R J Albertini
January 1985, Nature,
J A Nicklas, and T C Hunter, and J P O'Neill, and R J Albertini
February 1998, Mutation research,
J A Nicklas, and T C Hunter, and J P O'Neill, and R J Albertini
January 1990, Progress in clinical and biological research,
J A Nicklas, and T C Hunter, and J P O'Neill, and R J Albertini
January 2005, Environmental and molecular mutagenesis,
J A Nicklas, and T C Hunter, and J P O'Neill, and R J Albertini
January 1998, Environmental and molecular mutagenesis,
J A Nicklas, and T C Hunter, and J P O'Neill, and R J Albertini
January 1997, Environmental and molecular mutagenesis,
J A Nicklas, and T C Hunter, and J P O'Neill, and R J Albertini
January 1994, Environmental and molecular mutagenesis,
Copied contents to your clipboard!