Molecular bases of hprt mutations in malathion-treated human T-lymphocytes. 1998

J M Pluth, and J P O'Neill, and J A Nicklas, and R J Albertini
Genetic Toxicology Laboratory, University of Vermont, Burlington 05401, USA. pluth1@llnl.gov

Recently, we reported that 6 of 84 (7.1%) hprt mutants arising in in vitro malathion-treated human T-lymphocytes were characterized by specific genomic deletions in a 125-bp region of exon 3 (Pluth et al., Cancer Research 56 (1996) 2393-2399. We have now extended study to determine whether additional differences in molecular spectrum at a basepair level exist between control and malathion-treated mutations, and investigated whether there is evidence to support the hypothesis that malathion is an alkylating agent. We analyzed 101 hprt mutants (24 from control and 77 from treated cultures) isolated form six in vitro malathion exposures of T-lymphocytes from four healthy male donors. Analysis consisted of: Southern blotting, genomic multiplex PCR, genomic DNA sequencing and reverse transcription of PCR amplification (RT/PCR) and sequencing of the cDNA product. Mutations at several basepair sites were frequent after malathion exposure and were isolated from treated cells from at least two different individuals. Using a human hprt mutation database for comparison, the frequency of mutations at one of these sites (basepair 134) was found to be significantly elevated in the malathion-treated cell (p < 0.0005). Hprt mutations in malathion-treated cells arose preferentially at G:C basepairs, which is consistent with earlier reports that malathion alkylates guanine nucleotides. Assessing molecular changes at both genomic and cDNA levels in the same mutants revealed that many small, partial exon deletions (< 20 bp) in genomic DNA were often represented in the cDNA at the loss of one or more exons. In addition, It was noted that identical genomic mutations can result in different cDNA products in different T-cell isolates. These observations affirm the importance of genomic sequence analysis in combination with RT/PCR for a more accurate definition of the mutation spectrum.

UI MeSH Term Description Entries
D007041 Hypoxanthine Phosphoribosyltransferase An enzyme that catalyzes the conversion of 5-phosphoribosyl-1-pyrophosphate and hypoxanthine, guanine, or MERCAPTOPURINE to the corresponding 5'-mononucleotides and pyrophosphate. The enzyme is important in purine biosynthesis as well as central nervous system functions. Complete lack of enzyme activity is associated with the LESCH-NYHAN SYNDROME, while partial deficiency results in overproduction of uric acid. EC 2.4.2.8. Guanine Phosphoribosyltransferase,HPRT,Hypoxanthine-Guanine Phosphoribosyltransferase,IMP Pyrophosphorylase,HGPRT,HPRTase,Hypoxanthine Guanine Phosphoribosyltransferase,Phosphoribosyltransferase, Guanine,Phosphoribosyltransferase, Hypoxanthine,Phosphoribosyltransferase, Hypoxanthine-Guanine,Pyrophosphorylase, IMP
D007306 Insecticides Pesticides designed to control insects that are harmful to man. The insects may be directly harmful, as those acting as disease vectors, or indirectly harmful, as destroyers of crops, food products, or textile fabrics. Insecticide
D008294 Malathion A wide spectrum aliphatic organophosphate insecticide widely used for both domestic and commercial agricultural purposes. Carbafos,Carbofos,Carbophos,Cythion,Karbofos,Prioderm,Sadophos
D008297 Male Males
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012326 RNA Splicing The ultimate exclusion of nonsense sequences or intervening sequences (introns) before the final RNA transcript is sent to the cytoplasm. RNA, Messenger, Splicing,Splicing, RNA,RNA Splicings,Splicings, RNA
D013601 T-Lymphocytes Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen. T Cell,T Lymphocyte,T-Cells,Thymus-Dependent Lymphocytes,Cell, T,Cells, T,Lymphocyte, T,Lymphocyte, Thymus-Dependent,Lymphocytes, T,Lymphocytes, Thymus-Dependent,T Cells,T Lymphocytes,T-Cell,T-Lymphocyte,Thymus Dependent Lymphocytes,Thymus-Dependent Lymphocyte
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain
D017384 Sequence Deletion Deletion of sequences of nucleic acids from the genetic material of an individual. Deletion Mutation,Deletion Mutations,Deletion, Sequence,Deletions, Sequence,Mutation, Deletion,Mutations, Deletion,Sequence Deletions

Related Publications

J M Pluth, and J P O'Neill, and J A Nicklas, and R J Albertini
January 1992, Environmental and molecular mutagenesis,
J M Pluth, and J P O'Neill, and J A Nicklas, and R J Albertini
January 1989, Environmental and molecular mutagenesis,
J M Pluth, and J P O'Neill, and J A Nicklas, and R J Albertini
January 1990, Progress in clinical and biological research,
J M Pluth, and J P O'Neill, and J A Nicklas, and R J Albertini
January 1998, Environmental and molecular mutagenesis,
J M Pluth, and J P O'Neill, and J A Nicklas, and R J Albertini
December 1999, Mutation research,
J M Pluth, and J P O'Neill, and J A Nicklas, and R J Albertini
October 1993, Environmental health perspectives,
J M Pluth, and J P O'Neill, and J A Nicklas, and R J Albertini
November 1996, Mutagenesis,
J M Pluth, and J P O'Neill, and J A Nicklas, and R J Albertini
August 2000, Mutation research,
J M Pluth, and J P O'Neill, and J A Nicklas, and R J Albertini
December 1996, Carcinogenesis,
Copied contents to your clipboard!