DNA double strand break repair pathway choice: a chromatin based decision? 2015

T Clouaire, and G Legube
a Université de Toulouse; UPS; LBCMCP ; Toulouse , France.

DNA double-strand breaks (DSBs) are highly toxic lesions that can be rapidly repaired by 2 main pathways, namely Homologous Recombination (HR) and Non Homologous End Joining (NHEJ). The choice between these pathways is a critical, yet not completely understood, aspect of DSB repair. We recently found that distinct DSBs induced across the genome are not repaired by the same pathway. Indeed, DSBs induced in active genes, naturally enriched in the trimethyl form of histone H3 lysine 36 (H3K36me3), are channeled to repair by HR, in a manner depending on SETD2, the major H3K36 trimethyltransferase. Here, we propose that these findings may be generalized to other types of histone modifications and repair machineries thus defining a "DSB repair choice histone code". This "decision making" function of preexisting chromatin structure in DSB repair could connect the repair pathway used to the type and function of the damaged region, not only contributing to genome stability but also to its diversity.

UI MeSH Term Description Entries
D008239 Lysine An essential amino acid. It is often added to animal feed. Enisyl,L-Lysine,Lysine Acetate,Lysine Hydrochloride,Acetate, Lysine,L Lysine
D008745 Methylation Addition of methyl groups. In histo-chemistry methylation is used to esterify carboxyl groups and remove sulfate groups by treating tissue sections with hot methanol in the presence of hydrochloric acid. (From Stedman, 25th ed) Methylations
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D002843 Chromatin The material of CHROMOSOMES. It is a complex of DNA; HISTONES; and nonhistone proteins (CHROMOSOMAL PROTEINS, NON-HISTONE) found within the nucleus of a cell. Chromatins
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D006657 Histones Small chromosomal proteins (approx 12-20 kD) possessing an open, unfolded structure and attached to the DNA in cell nuclei by ionic linkages. Classification into the various types (designated histone I, histone II, etc.) is based on the relative amounts of arginine and lysine in each. Histone,Histone H1,Histone H1(s),Histone H2a,Histone H2b,Histone H3,Histone H3.3,Histone H4,Histone H5,Histone H7
D042822 Genomic Instability An increased tendency of the GENOME to acquire MUTATIONS when various processes involved in maintaining and replicating the genome are dysfunctional. Genome Instability,Genome Stability,Genomic Stability,Genome Instabilities,Genome Stabilities,Genomic Instabilities,Genomic Stabilities,Instabilities, Genome,Instabilities, Genomic,Instability, Genome,Instability, Genomic,Stabilities, Genome,Stabilities, Genomic,Stability, Genome,Stability, Genomic
D053903 DNA Breaks, Double-Stranded Interruptions in the sugar-phosphate backbone of DNA, across both strands adjacently. Double-Stranded DNA Breaks,Double-Strand DNA Breaks,Double-Stranded DNA Break,Break, Double-Strand DNA,Break, Double-Stranded DNA,Breaks, Double-Strand DNA,Breaks, Double-Stranded DNA,DNA Break, Double-Strand,DNA Break, Double-Stranded,DNA Breaks, Double Stranded,DNA Breaks, Double-Strand,Double Strand DNA Breaks,Double Stranded DNA Break,Double Stranded DNA Breaks,Double-Strand DNA Break
D059765 Homologous Recombination An exchange of DNA between matching or similar sequences. Homologous Recombinations,Recombination, Homologous,Recombinations, Homologous

Related Publications

T Clouaire, and G Legube
May 2011, Journal of cell science,
T Clouaire, and G Legube
January 2008, Cell research,
T Clouaire, and G Legube
July 2014, DNA repair,
T Clouaire, and G Legube
January 2022, Frontiers in genetics,
T Clouaire, and G Legube
January 2013, PloS one,
T Clouaire, and G Legube
November 2019, Nature reviews. Molecular cell biology,
T Clouaire, and G Legube
August 2012, Molecular cell,
T Clouaire, and G Legube
July 2012, Biochimica et biophysica acta,
T Clouaire, and G Legube
April 2007, Current opinion in genetics & development,
Copied contents to your clipboard!