A chromosome 19 clone from a translocation breakpoint shows close linkage and linkage disequilibrium with myotonic dystrophy. 1989

R G Korneluk, and H L MacLeod, and T W McKeithan, and J D Brooks, and A E MacKenzie
Division of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Canada.

The gene for myotonic dystrophy (DM), the most common form of adult muscular dystrophy, is situated on the proximal long arm of chromosome 19. Although there exist markers that are tightly linked to the DM locus, its precise location is unknown. The identification and characterization of additional DNA probes closely linked to the DM locus continue to be priorities. In this study, we report on the linkage between a new DNA marker, designated p alpha 1.4P, and the DM locus in 50 families. The probe p alpha 1.4P was derived from a cloned breakpoint junction fragment from the chromosomal translocation t(14;19)(q32;q13.1). This translocation has been previously described in some cases of chronic lymphocytic leukemia. We have identified a BanI restriction fragment length polymorphism that is detected by p alpha 1.4P. Segregation analysis between this RFLP and DM revealed close linkage between the two loci (lod = 10.95, theta = 0). Furthermore, statistical evidence for linkage disequilibrium between p alpha 1.4P and the DM locus in a French Canadian population was found. Finally, by means of a somatic cell hybrid mapping panel, p alpha 1.4P was sublocalized to 19q12----19q13.2.

UI MeSH Term Description Entries
D008040 Genetic Linkage The co-inheritance of two or more non-allelic GENES due to their being located more or less closely on the same CHROMOSOME. Genetic Linkage Analysis,Linkage, Genetic,Analyses, Genetic Linkage,Analysis, Genetic Linkage,Genetic Linkage Analyses,Linkage Analyses, Genetic,Linkage Analysis, Genetic
D009136 Muscular Dystrophies A heterogeneous group of inherited MYOPATHIES, characterized by wasting and weakness of the SKELETAL MUSCLE. They are categorized by the sites of MUSCLE WEAKNESS; AGE OF ONSET; and INHERITANCE PATTERNS. Muscular Dystrophy,Myodystrophica,Myodystrophy,Dystrophies, Muscular,Dystrophy, Muscular,Myodystrophicas,Myodystrophies
D012150 Polymorphism, Restriction Fragment Length Variation occurring within a species in the presence or length of DNA fragment generated by a specific endonuclease at a specific site in the genome. Such variations are generated by mutations that create or abolish recognition sites for these enzymes or change the length of the fragment. RFLP,Restriction Fragment Length Polymorphism,RFLPs,Restriction Fragment Length Polymorphisms
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D002888 Chromosomes, Human, Pair 19 A specific pair of GROUP F CHROMOSOMES of the human chromosome classification. Chromosome 19
D005819 Genetic Markers A phenotypically recognizable genetic trait which can be used to identify a genetic locus, a linkage group, or a recombination event. Chromosome Markers,DNA Markers,Markers, DNA,Markers, Genetic,Genetic Marker,Marker, Genetic,Chromosome Marker,DNA Marker,Marker, Chromosome,Marker, DNA,Markers, Chromosome
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000483 Alleles Variant forms of the same gene, occupying the same locus on homologous CHROMOSOMES, and governing the variants in production of the same gene product. Allelomorphs,Allele,Allelomorph
D014178 Translocation, Genetic A type of chromosome aberration characterized by CHROMOSOME BREAKAGE and transfer of the broken-off portion to another location, often to a different chromosome. Chromosomal Translocation,Translocation, Chromosomal,Chromosomal Translocations,Genetic Translocation,Genetic Translocations,Translocations, Chromosomal,Translocations, Genetic
D015252 Deoxyribonucleases, Type II Site-Specific Enzyme systems containing a single subunit and requiring only magnesium for endonucleolytic activity. The corresponding modification methylases are separate enzymes. The systems recognize specific short DNA sequences and cleave either within, or at a short specific distance from, the recognition sequence to give specific double-stranded fragments with terminal 5'-phosphates. Enzymes from different microorganisms with the same specificity are called isoschizomers. EC 3.1.21.4. DNA Restriction Enzymes, Type II,DNase, Site-Specific, Type II,Restriction Endonucleases, Type II,Type II Restriction Enzymes,DNase, Site Specific, Type II,Deoxyribonucleases, Type II, Site Specific,Deoxyribonucleases, Type II, Site-Specific,Site-Specific DNase, Type II,Type II Site Specific DNase,Type II Site Specific Deoxyribonucleases,Type II Site-Specific DNase,Type II Site-Specific Deoxyribonucleases,Deoxyribonucleases, Type II Site Specific,Site Specific DNase, Type II

Related Publications

R G Korneluk, and H L MacLeod, and T W McKeithan, and J D Brooks, and A E MacKenzie
March 1991, Genomics,
R G Korneluk, and H L MacLeod, and T W McKeithan, and J D Brooks, and A E MacKenzie
November 1986, Neurology,
R G Korneluk, and H L MacLeod, and T W McKeithan, and J D Brooks, and A E MacKenzie
April 2005, Journal of medical genetics,
R G Korneluk, and H L MacLeod, and T W McKeithan, and J D Brooks, and A E MacKenzie
October 1989, Genomics,
R G Korneluk, and H L MacLeod, and T W McKeithan, and J D Brooks, and A E MacKenzie
February 1990, Neurology,
R G Korneluk, and H L MacLeod, and T W McKeithan, and J D Brooks, and A E MacKenzie
November 1986, Human genetics,
R G Korneluk, and H L MacLeod, and T W McKeithan, and J D Brooks, and A E MacKenzie
January 1991, Neurology,
R G Korneluk, and H L MacLeod, and T W McKeithan, and J D Brooks, and A E MacKenzie
January 1987, Journal of neurogenetics,
R G Korneluk, and H L MacLeod, and T W McKeithan, and J D Brooks, and A E MacKenzie
July 1991, American journal of human genetics,
R G Korneluk, and H L MacLeod, and T W McKeithan, and J D Brooks, and A E MacKenzie
August 1983, Journal of medical genetics,
Copied contents to your clipboard!