Sheep erythrocyte rosetting induces multiple alterations in T lymphocyte function: inhibition of T cell receptor activity and stimulation of T11/CD2. 1989

J B Breitmeyer, and D L Faustman
Division of Tumor Immunology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115.

When T lymphocytes from human blood or lymphoid organs are prepared by the sheep red blood cell (SRBC) rosetting procedure, glycoproteins of the SRBC membrane interact intimately with the CD2 (T11) molecule on the T cell surface. We now show that rosette formation has measurable short- and long-term effects upon the T cells. First, for a period of 24-48 hr after rosetting, the signal transducing and activation functions of the T3/Ti T cell antigen receptor complex is paralyzed for anti-T3-induced calcium mobilization, with a concomitant decrease in proliferative response to mitogens or stimulatory anti-T3 antibodies. Calcium mobilization through the alternate pathway of T cell activation, the T11/CD2 SRBC receptor, was also inhibited by rosetting. Second, rosetting appears to confer a partial stimulatory signal through the T11/CD2 pathway. Thus, 72 hr or more after rosetting, there was increased expression of the T11(3) activation epitope, and rosetted T cells were stimulated to proliferate in the presence of anti-T11(3) antibodies alone. These results provide further details on the effects of SRBC-T cell interactions, with important methodological implications. Moreover, they suggest a hitherto unrecognized down-regulatory effect of engaging the CD2 molecule, and provide further evidence that the T cell receptor is functionally interconnected to the CD2 activation pathway.

UI MeSH Term Description Entries
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D011948 Receptors, Antigen, T-Cell Molecules on the surface of T-lymphocytes that recognize and combine with antigens. The receptors are non-covalently associated with a complex of several polypeptides collectively called CD3 antigens (CD3 COMPLEX). Recognition of foreign antigen and the major histocompatibility complex is accomplished by a single heterodimeric antigen-receptor structure, composed of either alpha-beta (RECEPTORS, ANTIGEN, T-CELL, ALPHA-BETA) or gamma-delta (RECEPTORS, ANTIGEN, T-CELL, GAMMA-DELTA) chains. Antigen Receptors, T-Cell,T-Cell Receptors,Receptors, T-Cell Antigen,T-Cell Antigen Receptor,T-Cell Receptor,Antigen Receptor, T-Cell,Antigen Receptors, T Cell,Receptor, T-Cell,Receptor, T-Cell Antigen,Receptors, T Cell Antigen,Receptors, T-Cell,T Cell Antigen Receptor,T Cell Receptor,T Cell Receptors,T-Cell Antigen Receptors
D011971 Receptors, Immunologic Cell surface molecules on cells of the immune system that specifically bind surface molecules or messenger molecules and trigger changes in the behavior of cells. Although these receptors were first identified in the immune system, many have important functions elsewhere. Immunologic Receptors,Immunologic Receptor,Immunological Receptors,Receptor, Immunologic,Receptors, Immunological
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002469 Cell Separation Techniques for separating distinct populations of cells. Cell Isolation,Cell Segregation,Isolation, Cell,Cell Isolations,Cell Segregations,Cell Separations,Isolations, Cell,Segregation, Cell,Segregations, Cell,Separation, Cell,Separations, Cell
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D000945 Antigens, Differentiation, T-Lymphocyte Antigens expressed on the cell membrane of T-lymphocytes during differentiation, activation, and normal and neoplastic transformation. Their phenotypic characterization is important in differential diagnosis and studies of thymic ontogeny and T-cell function. Antigens, Differentiation, T-Cell,Differentiation Antigens, T-Cell,L3T4 Antigens,Leu Antigens, T-Lymphocyte,T-Cell Differentiation Antigens,T-Lymphocyte Differentiation Antigens,T6 Antigens,Antigens, Differentiation, T Lymphocyte,Differentiation Antigens, T Lymphocyte,Antigens, L3T4,Antigens, T-Cell Differentiation,Antigens, T-Lymphocyte Differentiation,Antigens, T-Lymphocyte Leu,Antigens, T6,Differentiation Antigens, T Cell,Differentiation Antigens, T-Lymphocyte,Leu Antigens, T Lymphocyte,T Cell Differentiation Antigens,T Lymphocyte Differentiation Antigens,T-Lymphocyte Leu Antigens

Related Publications

J B Breitmeyer, and D L Faustman
July 1977, The American journal of pathology,
J B Breitmeyer, and D L Faustman
November 1986, Proceedings of the National Academy of Sciences of the United States of America,
J B Breitmeyer, and D L Faustman
August 1986, Journal of immunology (Baltimore, Md. : 1950),
J B Breitmeyer, and D L Faustman
June 1986, Journal of immunology (Baltimore, Md. : 1950),
J B Breitmeyer, and D L Faustman
January 1993, European journal of immunology,
J B Breitmeyer, and D L Faustman
May 1973, Nature: New biology,
Copied contents to your clipboard!