Regulation of particulate guanylate cyclase by atriopeptins: relation between peptide structure, receptor binding, and enzyme kinetics. 1989

S A Waldman, and R M Rapoport, and R R Fiscus, and D C Leitman, and L Y Chang, and F Murad
Department of Medicine, Stanford University, Palo Alto, CA 94304.

Structural analogs of atriopeptins (APs) were compared for their ability to activate particulate guanylate cyclase and bind to specific receptors in rat adrenal membranes. All analogs tested increase Vmax without altering the concentration of substrate required for half-maximum activity or the positive coperativity exhibited by the enzyme. Maximum velocities (pmoles of cGMP produced per min per mg protein) achieved in the absence and presence of APs were 128.3 +/- 6.6 and 283.8 +/- 20.6 using Mn2+-GTP, and 53.7 +/- 3.7 and 149.9 +/- 7.6 using Mg2+-GTP as the substrate, respectively. Although all APs were equally efficacious in activating the enzyme, their rank potency was ANF (8-33) = AP III = AP II greater than AP I when either divalent cation was used as the cofactor. The EC50 for activation of guanylate cyclase by AP I was about 10(-7) M, while that for the other peptides was about 10(-8) M, using either divalent cation cofactor. 125I-labeled ANF bound to rat adrenal membranes with a KD of 5.10(-10) M. Although all APs were equally efficacious in competing with labeled ANF for receptor binding, their rank potency was identical to that for enzyme activation. The Ki for AP I was about 10(-8) M, while that for the other peptides was about 10(-10) M. These data suggest that the carboxy terminal Phe-Arg present in the AP analogs except AP I and critical for biological and receptor-binding activity are also important in coupling receptor-ligand interaction with guanylate cyclase activation. The correlation between the rank order potency for receptor binding, enzyme activation, and the reported physiological actions of APs support the suggestion of a functional coupling between these proteins.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008345 Manganese A trace element with atomic symbol Mn, atomic number 25, and atomic weight 54.94. It is concentrated in cell mitochondria, mostly in the pituitary gland, liver, pancreas, kidney, and bone, influences the synthesis of mucopolysaccharides, stimulates hepatic synthesis of cholesterol and fatty acids, and is a cofactor in many enzymes, including arginase and alkaline phosphatase in the liver. (From AMA Drug Evaluations Annual 1992, p2035)
D009320 Atrial Natriuretic Factor A potent natriuretic and vasodilatory peptide or mixture of different-sized low molecular weight PEPTIDES derived from a common precursor and secreted mainly by the HEART ATRIUM. All these peptides share a sequence of about 20 AMINO ACIDS. ANF,ANP,Atrial Natriuretic Peptide,Atrial Natriuretic Peptides,Atriopeptins,Auriculin,Natriuretic Peptides, Atrial,ANF (1-126),ANF (1-28),ANF (99-126),ANF Precursors,ANP (1-126),ANP (1-28),ANP Prohormone (99-126),ANP-(99-126),Atrial Natriuretic Factor (1-126),Atrial Natriuretic Factor (1-28),Atrial Natriuretic Factor (99-126),Atrial Natriuretic Factor Precursors,Atrial Natriuretic Factor Prohormone,Atrial Natriuretic Peptide (1-126),Atrial Pronatriodilatin,Atriopeptigen,Atriopeptin (1-28),Atriopeptin (99-126),Atriopeptin 126,Atriopeptin Prohormone (1-126),Cardiodilatin (99-126),Cardiodilatin Precursor,Cardionatrin I,Cardionatrin IV,Prepro-ANP,Prepro-CDD-ANF,Prepro-Cardiodilatin-Atrial Natriuretic Factor,Pro-ANF,ProANF,Proatrial Natriuretic Factor,Pronatriodilatin,alpha ANP,alpha-ANP Dimer,alpha-Atrial Natriuretic Peptide,beta-ANP,beta-Atrial Natriuretic Peptide,gamma ANP (99-126),gamma-Atrial Natriuretic Peptide,Natriuretic Peptide, Atrial,Peptide, Atrial Natriuretic,Peptides, Atrial Natriuretic,Prepro ANP,Prepro CDD ANF,Prepro Cardiodilatin Atrial Natriuretic Factor,Pro ANF,alpha ANP Dimer,alpha Atrial Natriuretic Peptide,beta ANP,beta Atrial Natriuretic Peptide,gamma Atrial Natriuretic Peptide
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D006162 Guanylate Cyclase An enzyme that catalyzes the conversion of GTP to 3',5'-cyclic GMP and pyrophosphate. It also acts on ITP and dGTP. (From Enzyme Nomenclature, 1992) EC 4.6.1.2. Guanyl Cyclase,Deoxyguanylate Cyclase,Guanylyl Cyclase,Inosinate Cyclase,Cyclase, Deoxyguanylate,Cyclase, Guanyl,Cyclase, Guanylate,Cyclase, Guanylyl,Cyclase, Inosinate
D000311 Adrenal Glands A pair of glands located at the cranial pole of each of the two KIDNEYS. Each adrenal gland is composed of two distinct endocrine tissues with separate embryonic origins, the ADRENAL CORTEX producing STEROIDS and the ADRENAL MEDULLA producing NEUROTRANSMITTERS. Adrenal Gland,Gland, Adrenal,Glands, Adrenal
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

S A Waldman, and R M Rapoport, and R R Fiscus, and D C Leitman, and L Y Chang, and F Murad
January 1989, The International journal of biochemistry,
S A Waldman, and R M Rapoport, and R R Fiscus, and D C Leitman, and L Y Chang, and F Murad
June 2011, The FEBS journal,
S A Waldman, and R M Rapoport, and R R Fiscus, and D C Leitman, and L Y Chang, and F Murad
October 1989, Molecular and cellular biochemistry,
S A Waldman, and R M Rapoport, and R R Fiscus, and D C Leitman, and L Y Chang, and F Murad
January 2012, Annual review of biochemistry,
S A Waldman, and R M Rapoport, and R R Fiscus, and D C Leitman, and L Y Chang, and F Murad
July 1998, American journal of obstetrics and gynecology,
S A Waldman, and R M Rapoport, and R R Fiscus, and D C Leitman, and L Y Chang, and F Murad
November 1996, The American journal of physiology,
S A Waldman, and R M Rapoport, and R R Fiscus, and D C Leitman, and L Y Chang, and F Murad
March 1991, Biochimica et biophysica acta,
S A Waldman, and R M Rapoport, and R R Fiscus, and D C Leitman, and L Y Chang, and F Murad
July 1988, Biochemical pharmacology,
S A Waldman, and R M Rapoport, and R R Fiscus, and D C Leitman, and L Y Chang, and F Murad
May 1992, The Biochemical journal,
S A Waldman, and R M Rapoport, and R R Fiscus, and D C Leitman, and L Y Chang, and F Murad
January 1994, Advances in pharmacology (San Diego, Calif.),
Copied contents to your clipboard!