Nerve growth factor changes the relative levels of neuropeptides in developing sensory and sympathetic ganglia of the chick embryo. 1985

M Hayashi, and D Edgar, and H Thoenen

The effects of chronic nerve growth factor administration on the development of neuropeptides in the embryonic chick peripheral nervous system were quantitated by radioimmunoassays. Starting at embryonic Day 3.5, daily doses of 20 micrograms of nerve growth factor (NGF) increased the substance P content of lumbosacral spinal sensory ganglia at all ages studied (Days 10-14), while having no effect on substance P levels of thoracic sensory ganglia. In contrast, the contents of somatostatin were increased in both thoracic and lumbosacral ganglia, but only at comparatively late time points (Day 14). Nerve growth factor administration was also found to decrease the somatostatin contents of lumbosacral paravertebral sympathetic ganglia at early time points (Day 8) while increasing levels at later stages (Day 14), thus acting to accelerate the normally occurring developmental changes in level of this peptide. These changes were shown to be specific for somatostatin by demonstrating that NGF increased tyrosine hydroxylase levels in sympathetic neurons at Day 8, and had no effect on sympathetic vasoactive intestinal polypeptide levels at Day 14. It has been concluded that exogenous NGF does not simply act to increase or prolong the expression of neuron-specific phenotypes in the chick, but rather its action is time and location dependent to accelerate development.

UI MeSH Term Description Entries
D008297 Male Males
D009414 Nerve Growth Factors Factors which enhance the growth potentialities of sensory and sympathetic nerve cells. Neurite Outgrowth Factor,Neurite Outgrowth Factors,Neuronal Growth-Associated Protein,Neuronotrophic Factor,Neurotrophic Factor,Neurotrophic Factors,Neurotrophin,Neurotrophins,Growth-Associated Proteins, Neuronal,Neuronal Growth-Associated Proteins,Neuronotrophic Factors,Neurotrophic Protein,Neurotrophic Proteins,Proteins, Neuronal Growth-Associated,Factor, Neurite Outgrowth,Factor, Neuronotrophic,Factor, Neurotrophic,Factors, Nerve Growth,Factors, Neurite Outgrowth,Factors, Neuronotrophic,Factors, Neurotrophic,Growth Associated Proteins, Neuronal,Growth-Associated Protein, Neuronal,Neuronal Growth Associated Protein,Neuronal Growth Associated Proteins,Outgrowth Factor, Neurite,Outgrowth Factors, Neurite,Protein, Neuronal Growth-Associated
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D011863 Radioimmunoassay Classic quantitative assay for detection of antigen-antibody reactions using a radioactively labeled substance (radioligand) either directly or indirectly to measure the binding of the unlabeled substance to a specific antibody or other receptor system. Non-immunogenic substances (e.g., haptens) can be measured if coupled to larger carrier proteins (e.g., bovine gamma-globulin or human serum albumin) capable of inducing antibody formation. Radioimmunoassays
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005727 Ganglia, Spinal Sensory ganglia located on the dorsal spinal roots within the vertebral column. The spinal ganglion cells are pseudounipolar. The single primary branch bifurcates sending a peripheral process to carry sensory information from the periphery and a central branch which relays that information to the spinal cord or brain. Dorsal Root Ganglia,Spinal Ganglia,Dorsal Root Ganglion,Ganglion, Spinal,Ganglia, Dorsal Root,Ganglion, Dorsal Root,Spinal Ganglion
D005728 Ganglia, Sympathetic Ganglia of the sympathetic nervous system including the paravertebral and the prevertebral ganglia. Among these are the sympathetic chain ganglia, the superior, middle, and inferior cervical ganglia, and the aorticorenal, celiac, and stellate ganglia. Celiac Ganglia,Sympathetic Ganglia,Celiac Ganglion,Ganglion, Sympathetic,Ganglia, Celiac,Ganglion, Celiac,Sympathetic Ganglion
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013004 Somatostatin A 14-amino acid peptide named for its ability to inhibit pituitary GROWTH HORMONE release, also called somatotropin release-inhibiting factor. It is expressed in the central and peripheral nervous systems, the gut, and other organs. SRIF can also inhibit the release of THYROID-STIMULATING HORMONE; PROLACTIN; INSULIN; and GLUCAGON besides acting as a neurotransmitter and neuromodulator. In a number of species including humans, there is an additional form of somatostatin, SRIF-28 with a 14-amino acid extension at the N-terminal. Cyclic Somatostatin,Somatostatin-14,Somatotropin Release-Inhibiting Hormone,SRIH-14,Somatofalk,Somatostatin, Cyclic,Somatotropin Release-Inhibiting Factor,Stilamin,Somatostatin 14,Somatotropin Release Inhibiting Factor,Somatotropin Release Inhibiting Hormone

Related Publications

M Hayashi, and D Edgar, and H Thoenen
December 1995, Molecular and cellular neurosciences,
M Hayashi, and D Edgar, and H Thoenen
March 1988, Developmental biology,
M Hayashi, and D Edgar, and H Thoenen
February 1975, Journal of embryology and experimental morphology,
M Hayashi, and D Edgar, and H Thoenen
October 1968, Experientia,
M Hayashi, and D Edgar, and H Thoenen
February 1981, Journal of neurocytology,
M Hayashi, and D Edgar, and H Thoenen
August 1971, Journal of neurochemistry,
M Hayashi, and D Edgar, and H Thoenen
July 1979, The Journal of biological chemistry,
M Hayashi, and D Edgar, and H Thoenen
August 1974, Journal of embryology and experimental morphology,
Copied contents to your clipboard!