Nerve growth factor receptors. Characterization of two distinct classes of binding sites on chick embryo sensory ganglia cells. 1979

A Sutter, and R J Riopelle, and R M Harris-Warrick, and E M Shooter

Steady state and kinetic studies on the binding of 125I-beta nerve growth factor (NGF) to single cells from sensory ganglia of 8-day-old chick embryos show two distinct, saturable binding sites with dissociation constants of Kd(I) = 2.3 X 10(-11) M and Kd(II) = 1.7 X 10(-9) M. The difference in the affinities is due to different rate constants of dissociation (k-1(I) = 10(-3) s-1, k-1(II) = 2 X 10(-1 s-1). The association to both sites is apparently diffusion controlled (k+1(I) = 4.8 X 10(7) M-1s-1, k+2(II) = 10(7) to 10(8) M-1s-1). The binding of betaNGF to both sites is specific, since none of a number of hormones or proteins tested compete for the binding of 125I-betaNGF to either of those two sites. The heterogeneity of the binding of 125I-betaNGF is not due to heterogeneity of the 125I-betaNGF preparation nor to a negatively cooperative binding. In experiments where the dissociation of 125I-betaNGF is induced by the addition of saturating amounts of unlabeled betaNGF, the ratio of the 125I-betaNGF released with either of the two dissociation rate constants is solely dependent on the occupancy of the two sites before dissociation is started and is independent of the total occupancy of the sites during dissociation. The rate of dissociation of 125I-betaNGF from the higher affinity binding site I is accelerated by unlabeled betaNGF under conditions where the occupancy is both increased and decreased. Although the dissociation characteristics of 125I-beta NGF change with increasing times of exposure of the cells to the ligand, and 125I-beta NGF is degraded after it binds to the cells, these secondary processes do not interfere with the analysis of the binding data. At the lowest concentration of 125I-beta NGF used for the analysis less than 10% of the 125I-beta NGF is degraded. Both kinetic and steady state binding data reveal the two NGF binding sites at 2 degrees C as well as at 37 degrees C.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009414 Nerve Growth Factors Factors which enhance the growth potentialities of sensory and sympathetic nerve cells. Neurite Outgrowth Factor,Neurite Outgrowth Factors,Neuronal Growth-Associated Protein,Neuronotrophic Factor,Neurotrophic Factor,Neurotrophic Factors,Neurotrophin,Neurotrophins,Growth-Associated Proteins, Neuronal,Neuronal Growth-Associated Proteins,Neuronotrophic Factors,Neurotrophic Protein,Neurotrophic Proteins,Proteins, Neuronal Growth-Associated,Factor, Neurite Outgrowth,Factor, Neuronotrophic,Factor, Neurotrophic,Factors, Nerve Growth,Factors, Neurite Outgrowth,Factors, Neuronotrophic,Factors, Neurotrophic,Growth Associated Proteins, Neuronal,Growth-Associated Protein, Neuronal,Neuronal Growth Associated Protein,Neuronal Growth Associated Proteins,Outgrowth Factor, Neurite,Outgrowth Factors, Neurite,Protein, Neuronal Growth-Associated
D011955 Receptors, Drug Proteins that bind specific drugs with high affinity and trigger intracellular changes influencing the behavior of cells. Drug receptors are generally thought to be receptors for some endogenous substance not otherwise specified. Drug Receptors,Drug Receptor,Receptor, Drug
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D005724 Ganglia Clusters of multipolar neurons surrounded by a capsule of loosely organized CONNECTIVE TISSUE located outside the CENTRAL NERVOUS SYSTEM.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001667 Binding, Competitive The interaction of two or more substrates or ligands with the same binding site. The displacement of one by the other is used in quantitative and selective affinity measurements. Competitive Binding

Related Publications

A Sutter, and R J Riopelle, and R M Harris-Warrick, and E M Shooter
September 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience,
A Sutter, and R J Riopelle, and R M Harris-Warrick, and E M Shooter
October 1969, Biochimica et biophysica acta,
A Sutter, and R J Riopelle, and R M Harris-Warrick, and E M Shooter
May 1969, Brain research,
A Sutter, and R J Riopelle, and R M Harris-Warrick, and E M Shooter
December 1980, The Journal of biological chemistry,
A Sutter, and R J Riopelle, and R M Harris-Warrick, and E M Shooter
March 1985, Developmental biology,
A Sutter, and R J Riopelle, and R M Harris-Warrick, and E M Shooter
June 1964, Biochemical and biophysical research communications,
A Sutter, and R J Riopelle, and R M Harris-Warrick, and E M Shooter
January 1992, In vitro cellular & developmental biology : journal of the Tissue Culture Association,
A Sutter, and R J Riopelle, and R M Harris-Warrick, and E M Shooter
March 1976, The Journal of biological chemistry,
A Sutter, and R J Riopelle, and R M Harris-Warrick, and E M Shooter
January 1987, International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience,
Copied contents to your clipboard!