| D007555 |
Isoxazoles |
Azoles with an OXYGEN and a NITROGEN next to each other at the 1,2 positions, in contrast to OXAZOLES that have nitrogens at the 1,3 positions. |
Isoxazole |
|
| D008826 |
Microbial Sensitivity Tests |
Any tests that demonstrate the relative efficacy of different chemotherapeutic agents against specific microorganisms (i.e., bacteria, fungi, viruses). |
Bacterial Sensitivity Tests,Drug Sensitivity Assay, Microbial,Minimum Inhibitory Concentration,Antibacterial Susceptibility Breakpoint Determination,Antibiogram,Antimicrobial Susceptibility Breakpoint Determination,Bacterial Sensitivity Test,Breakpoint Determination, Antibacterial Susceptibility,Breakpoint Determination, Antimicrobial Susceptibility,Fungal Drug Sensitivity Tests,Fungus Drug Sensitivity Tests,Sensitivity Test, Bacterial,Sensitivity Tests, Bacterial,Test, Bacterial Sensitivity,Tests, Bacterial Sensitivity,Viral Drug Sensitivity Tests,Virus Drug Sensitivity Tests,Antibiograms,Concentration, Minimum Inhibitory,Concentrations, Minimum Inhibitory,Inhibitory Concentration, Minimum,Inhibitory Concentrations, Minimum,Microbial Sensitivity Test,Minimum Inhibitory Concentrations,Sensitivity Test, Microbial,Sensitivity Tests, Microbial,Test, Microbial Sensitivity,Tests, Microbial Sensitivity |
|
| D009682 |
Magnetic Resonance Spectroscopy |
Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). |
In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR |
|
| D011720 |
Pyrazoles |
Azoles of two nitrogens at the 1,2 positions, next to each other, in contrast with IMIDAZOLES in which they are at the 1,3 positions. |
|
|
| D003577 |
Cytochrome P-450 Enzyme System |
A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. |
Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450 |
|
| D005658 |
Fungi |
A kingdom of eukaryotic, heterotrophic organisms that live parasitically as saprobes, including MUSHROOMS; YEASTS; smuts, molds, etc. They reproduce either sexually or asexually, and have life cycles that range from simple to complex. Filamentous fungi, commonly known as molds, refer to those that grow as multicellular colonies. |
Fungi, Filamentous,Molds,Filamentous Fungi,Filamentous Fungus,Fungus,Fungus, Filamentous,Mold |
|
| D000900 |
Anti-Bacterial Agents |
Substances that inhibit the growth or reproduction of BACTERIA. |
Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial |
|
| D000935 |
Antifungal Agents |
Substances that destroy fungi by suppressing their ability to grow or reproduce. They differ from FUNGICIDES, INDUSTRIAL because they defend against fungi present in human or animal tissues. |
Anti-Fungal Agents,Antifungal Agent,Fungicides, Therapeutic,Antibiotics, Antifungal,Therapeutic Fungicides,Agent, Antifungal,Anti Fungal Agents,Antifungal Antibiotics |
|
| D001419 |
Bacteria |
One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. |
Eubacteria |
|
| D013329 |
Structure-Activity Relationship |
The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. |
Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships |
|