Synthesis, biological evaluation and molecular docking of some substituted pyrazolines and isoxazolines as potential antimicrobial agents. 2015

Sameena Bano, and Mohammad Sarwar Alam, and Kalim Javed, and Mridu Dudeja, and Ayan Kumar Das, and Abhijeet Dhulap
Department of Chemistry, Faculty of Science, Jamia Hamdard (Hamdard University), New Delhi, India.

A series of substituted pyrazolines (2a-e, 3a-h and 6a-c) and isoxazolines (4a-e) were synthesized and their structures were established on the basis of IR, (1)H NMR, (13)C NMR and mass spectra. All the synthesized compounds were tested against two bacterial and four fungal strains and found to exhibit moderate to potent antifungal activity. Compounds 2b, 4c, 4d and 6a-c exhibited significant activity against all tested fungal strains. MIC values of all the active compounds were comparable with standard drug fluconazole. The results of the in silico molecular docking study supported the antifungal activity of the synthesized compounds.

UI MeSH Term Description Entries
D007555 Isoxazoles Azoles with an OXYGEN and a NITROGEN next to each other at the 1,2 positions, in contrast to OXAZOLES that have nitrogens at the 1,3 positions. Isoxazole
D008826 Microbial Sensitivity Tests Any tests that demonstrate the relative efficacy of different chemotherapeutic agents against specific microorganisms (i.e., bacteria, fungi, viruses). Bacterial Sensitivity Tests,Drug Sensitivity Assay, Microbial,Minimum Inhibitory Concentration,Antibacterial Susceptibility Breakpoint Determination,Antibiogram,Antimicrobial Susceptibility Breakpoint Determination,Bacterial Sensitivity Test,Breakpoint Determination, Antibacterial Susceptibility,Breakpoint Determination, Antimicrobial Susceptibility,Fungal Drug Sensitivity Tests,Fungus Drug Sensitivity Tests,Sensitivity Test, Bacterial,Sensitivity Tests, Bacterial,Test, Bacterial Sensitivity,Tests, Bacterial Sensitivity,Viral Drug Sensitivity Tests,Virus Drug Sensitivity Tests,Antibiograms,Concentration, Minimum Inhibitory,Concentrations, Minimum Inhibitory,Inhibitory Concentration, Minimum,Inhibitory Concentrations, Minimum,Microbial Sensitivity Test,Minimum Inhibitory Concentrations,Sensitivity Test, Microbial,Sensitivity Tests, Microbial,Test, Microbial Sensitivity,Tests, Microbial Sensitivity
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D011720 Pyrazoles Azoles of two nitrogens at the 1,2 positions, next to each other, in contrast with IMIDAZOLES in which they are at the 1,3 positions.
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D005658 Fungi A kingdom of eukaryotic, heterotrophic organisms that live parasitically as saprobes, including MUSHROOMS; YEASTS; smuts, molds, etc. They reproduce either sexually or asexually, and have life cycles that range from simple to complex. Filamentous fungi, commonly known as molds, refer to those that grow as multicellular colonies. Fungi, Filamentous,Molds,Filamentous Fungi,Filamentous Fungus,Fungus,Fungus, Filamentous,Mold
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial
D000935 Antifungal Agents Substances that destroy fungi by suppressing their ability to grow or reproduce. They differ from FUNGICIDES, INDUSTRIAL because they defend against fungi present in human or animal tissues. Anti-Fungal Agents,Antifungal Agent,Fungicides, Therapeutic,Antibiotics, Antifungal,Therapeutic Fungicides,Agent, Antifungal,Anti Fungal Agents,Antifungal Antibiotics
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships

Related Publications

Sameena Bano, and Mohammad Sarwar Alam, and Kalim Javed, and Mridu Dudeja, and Ayan Kumar Das, and Abhijeet Dhulap
January 2016, Pakistan journal of pharmaceutical sciences,
Sameena Bano, and Mohammad Sarwar Alam, and Kalim Javed, and Mridu Dudeja, and Ayan Kumar Das, and Abhijeet Dhulap
October 2019, Antibiotics (Basel, Switzerland),
Sameena Bano, and Mohammad Sarwar Alam, and Kalim Javed, and Mridu Dudeja, and Ayan Kumar Das, and Abhijeet Dhulap
January 2019, Infectious disorders drug targets,
Sameena Bano, and Mohammad Sarwar Alam, and Kalim Javed, and Mridu Dudeja, and Ayan Kumar Das, and Abhijeet Dhulap
August 2020, RSC advances,
Sameena Bano, and Mohammad Sarwar Alam, and Kalim Javed, and Mridu Dudeja, and Ayan Kumar Das, and Abhijeet Dhulap
November 2018, Molecules (Basel, Switzerland),
Sameena Bano, and Mohammad Sarwar Alam, and Kalim Javed, and Mridu Dudeja, and Ayan Kumar Das, and Abhijeet Dhulap
September 2022, Chemistry & biodiversity,
Sameena Bano, and Mohammad Sarwar Alam, and Kalim Javed, and Mridu Dudeja, and Ayan Kumar Das, and Abhijeet Dhulap
January 2017, Journal of chemical biology,
Sameena Bano, and Mohammad Sarwar Alam, and Kalim Javed, and Mridu Dudeja, and Ayan Kumar Das, and Abhijeet Dhulap
September 2023, ACS omega,
Sameena Bano, and Mohammad Sarwar Alam, and Kalim Javed, and Mridu Dudeja, and Ayan Kumar Das, and Abhijeet Dhulap
May 2024, Bioorganic & medicinal chemistry letters,
Sameena Bano, and Mohammad Sarwar Alam, and Kalim Javed, and Mridu Dudeja, and Ayan Kumar Das, and Abhijeet Dhulap
February 2024, ACS chemical neuroscience,
Copied contents to your clipboard!