Vascular receptor binding activities and cyclic GMP responses by synthetic human and rat atrial natriuretic peptides (ANP) and receptor down-regulation by ANP. 1985

Y Hirata, and M Tomita, and S Takada, and H Yoshimi

Biological activities of a variety of synthetic human (h) and rat (r) atrial natriuretic peptide (ANP) and related peptides as assessed by receptor binding and cyclic GMP response, and regulation of vascular ANP receptors were studied in rat aortic vascular smooth muscle cells (VSMC) in culture. alpha-hANP1-28 and alpha-hANP7-28 equally inhibited the binding of 125I-labeled-alpha-hANP to its vascular receptors, whereas Met(O)12-alpha-hANP1-28 was less potent and reduced and carboxymethylated (RCM)-alpha-hANP1-28 was ineffective. rANP5-27 and rANP5-28 were equipotent in receptor binding, whereas rANP5-25 had somewhat less potent effect and rANP8-28 fragment was ineffective. alpha-hANP1-28, alpha-hANP7-28, rANP5-27 and rANP5-28 similarly stimulated intracellular cyclic GMP formation, whereas rANP5-25 showed less stimulatory effect, and RCM-alpha-hANP1-28, Met12-sulfoxide and rANP fragment were ineffective. Pretreatment with unlabeled alpha-hANP (3.2 X 10(-9) and 3.2 X 10(-8)M) for 24 hrs resulted in a substantial reduction (55 and 75%) of total receptor number without changing the affinity of ANP receptors. These results suggest that the common ring structure formed by the disulfide bond in the molecule is critical for receptor binding and subsequent biological actions, and that a hydrophobic amino acid located at the position of 12, and (24-26) residues at the C-terminal side, but not (1-6) at the N-terminal side, of the disulfide bridge may play a part in modulating receptor binding and/or biological functions. The present study also indicates "down-regulation" of vascular ANP receptors by homologous ligand.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006152 Cyclic GMP Guanosine cyclic 3',5'-(hydrogen phosphate). A guanine nucleotide containing one phosphate group which is esterified to the sugar moiety in both the 3'- and 5'-positions. It is a cellular regulatory agent and has been described as a second messenger. Its levels increase in response to a variety of hormones, including acetylcholine, insulin, and oxytocin and it has been found to activate specific protein kinases. (From Merck Index, 11th ed) Guanosine Cyclic 3',5'-Monophosphate,Guanosine Cyclic 3,5 Monophosphate,Guanosine Cyclic Monophosphate,Guanosine Cyclic-3',5'-Monophosphate,3',5'-Monophosphate, Guanosine Cyclic,Cyclic 3',5'-Monophosphate, Guanosine,Cyclic Monophosphate, Guanosine,Cyclic-3',5'-Monophosphate, Guanosine,GMP, Cyclic,Guanosine Cyclic 3',5' Monophosphate,Monophosphate, Guanosine Cyclic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001667 Binding, Competitive The interaction of two or more substrates or ligands with the same binding site. The displacement of one by the other is used in quantitative and selective affinity measurements. Competitive Binding
D015056 1-Methyl-3-isobutylxanthine A potent cyclic nucleotide phosphodiesterase inhibitor; due to this action, the compound increases cyclic AMP and cyclic GMP in tissue and thereby activates CYCLIC NUCLEOTIDE-REGULATED PROTEIN KINASES 3-Isobutyl-1-methylxanthine,Isobutyltheophylline,IBMX,1 Methyl 3 isobutylxanthine,3 Isobutyl 1 methylxanthine
D017461 Receptors, Atrial Natriuretic Factor Cell surface proteins that bind ATRIAL NATRIURETIC FACTOR with high affinity and trigger intracellular changes influencing the behavior of cells. They contain intrinsic guanylyl cyclase activity. ANF Receptor,ANF Receptors,ANP Receptor,ANP Receptors,Atrial Natriuretic Factor Receptors,Atrial Natriuretic Peptides Receptors,Atriopeptin Receptors,Receptors, ANF,Receptors, Atriopeptin,Atrial Natriuretic Factor Receptor,Atrial Natriuretic Peptides Receptor,Receptors, ANP,Receptors, Atrial Natriuretic Peptides,Receptor, ANF,Receptor, ANP

Related Publications

Y Hirata, and M Tomita, and S Takada, and H Yoshimi
March 1987, European journal of pharmacology,
Y Hirata, and M Tomita, and S Takada, and H Yoshimi
April 1990, Biochemical and biophysical research communications,
Y Hirata, and M Tomita, and S Takada, and H Yoshimi
September 1988, Klinische Wochenschrift,
Y Hirata, and M Tomita, and S Takada, and H Yoshimi
January 1986, Biochimica et biophysica acta,
Y Hirata, and M Tomita, and S Takada, and H Yoshimi
February 1990, Journal of neuroscience research,
Y Hirata, and M Tomita, and S Takada, and H Yoshimi
October 1985, Biochemical and biophysical research communications,
Y Hirata, and M Tomita, and S Takada, and H Yoshimi
August 1991, The Journal of biological chemistry,
Y Hirata, and M Tomita, and S Takada, and H Yoshimi
November 1992, Hearing research,
Y Hirata, and M Tomita, and S Takada, and H Yoshimi
January 1987, Acta physiologica Polonica,
Y Hirata, and M Tomita, and S Takada, and H Yoshimi
September 1984, Biochemical and biophysical research communications,
Copied contents to your clipboard!