Topographic organization of tufted cell axonal projections in the hamster main olfactory bulb: an intrabulbar associational system. 1985

T A Schoenfeld, and J E Marchand, and F Macrides

The organization of intrinsic axonal projections of principal neurons in the main olfactory bulb (MOB) was studied in hamsters by using wheat germ agglutinin-horseradish peroxidase (WGA-HRP) and fluorescent dyes. Punctate injections of either WGA-HRP or fast blue (FB) that are restricted to small sectors on one side of the MOB produce comparably restricted fields of retrograde labeling on the opposite side. Label is found predominantly in superficially situated (middle and external) tufted cells that lie near and at the border between the external plexiform and glomerular layers. Few of the deeper middle tufted, internal tufted, or mitral cells and no external tufted cells that lie in the superficial two-thirds of the glomerular layer are labeled in regions remote to the injection site. Anterograde transport of WGA-HRP from the injection site labels axons that travel dorsally and ventrally in restricted bands through the internal plexiform layer and then terminate within this layer in the punctate sector on the opposite side that contains retrogradely labeled neurons. Such reciprocal projections between opposing regions of the medial and lateral sides of the MOB are found at all rostrocaudal and dorsoventral levels. When punctate injections of FB into the MOB are paired with restricted injections of a second fluorescent tracer (nuclear yellow or diamidino yellow dihydrochloride) into the appropriate sector of pars externa (pE) of the anterior olfactory nucleus, the punctate region of remote retrogradely labeled principal neurons is embedded within a topographically restricted longitudinal wedge of retrogradely labeled mitral and tufted cells that project extrinsically to or through pE. However, extremely few of these neurons are double-retrogradely labeled. The results reveal the existence of an intrabulbar associational system in which principal neurons engage in point-to-point, reciprocal projections between opposing regions of the medial and lateral MOB. Moreover, the results indicate that this associational system largely arises from superficially situated tufted cells distinct from those that support bulbofugal projections into the topographically organized interbulbar commissural system via pE.

UI MeSH Term Description Entries
D008297 Male Males
D008647 Mesocricetus A genus in the order Rodentia and family Cricetidae. One species, Mesocricetus auratus or golden hamster is widely used in biomedical research. Hamsters, Golden,Hamsters, Golden Syrian,Hamsters, Syrian,Mesocricetus auratus,Syrian Golden Hamster,Syrian Hamster,Golden Hamster,Golden Hamster, Syrian,Golden Hamsters,Golden Syrian Hamsters,Hamster, Golden,Hamster, Syrian,Hamster, Syrian Golden,Syrian Hamsters
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D009830 Olfactory Bulb Ovoid body resting on the CRIBRIFORM PLATE of the ethmoid bone where the OLFACTORY NERVE terminates. The olfactory bulb contains several types of nerve cells including the mitral cells, on whose DENDRITES the olfactory nerve synapses, forming the olfactory glomeruli. The accessory olfactory bulb, which receives the projection from the VOMERONASAL ORGAN via the vomeronasal nerve, is also included here. Accessory Olfactory Bulb,Olfactory Tract,Bulbus Olfactorius,Lateral Olfactory Tract,Main Olfactory Bulb,Olfactory Glomerulus,Accessory Olfactory Bulbs,Bulb, Accessory Olfactory,Bulb, Main Olfactory,Bulb, Olfactory,Bulbs, Accessory Olfactory,Bulbs, Main Olfactory,Bulbs, Olfactory,Glomerulus, Olfactory,Lateral Olfactory Tracts,Main Olfactory Bulbs,Olfactorius, Bulbus,Olfactory Bulb, Accessory,Olfactory Bulb, Main,Olfactory Bulbs,Olfactory Bulbs, Accessory,Olfactory Bulbs, Main,Olfactory Tract, Lateral,Olfactory Tracts,Olfactory Tracts, Lateral,Tract, Lateral Olfactory,Tract, Olfactory,Tracts, Lateral Olfactory,Tracts, Olfactory
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D006735 Horseradish Peroxidase An enzyme isolated from horseradish which is able to act as an antigen. It is frequently used as a histochemical tracer for light and electron microscopy. Its antigenicity has permitted its use as a combined antigen and marker in experimental immunology. Alpha-Peroxidase,Ferrihorseradish Peroxidase,Horseradish Peroxidase II,Horseradish Peroxidase III,Alpha Peroxidase,II, Horseradish Peroxidase,III, Horseradish Peroxidase,Peroxidase II, Horseradish,Peroxidase III, Horseradish,Peroxidase, Ferrihorseradish,Peroxidase, Horseradish
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001244 Association A functional relationship between psychological phenomena of such nature that the presence of one tends to evoke the other; also, the process by which such a relationship is established. Associations
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon

Related Publications

T A Schoenfeld, and J E Marchand, and F Macrides
December 1994, Cell,
T A Schoenfeld, and J E Marchand, and F Macrides
July 1982, The Journal of comparative neurology,
T A Schoenfeld, and J E Marchand, and F Macrides
May 1983, The Journal of comparative neurology,
T A Schoenfeld, and J E Marchand, and F Macrides
July 1984, The Journal of comparative neurology,
T A Schoenfeld, and J E Marchand, and F Macrides
January 2021, Cell and tissue research,
T A Schoenfeld, and J E Marchand, and F Macrides
July 1984, The Journal of comparative neurology,
T A Schoenfeld, and J E Marchand, and F Macrides
January 2010, Frontiers in neural circuits,
T A Schoenfeld, and J E Marchand, and F Macrides
February 1993, Microscopy research and technique,
Copied contents to your clipboard!