Intrabulbar associational system in the rat olfactory bulb comprises cholecystokinin-containing tufted cells that synapse onto the dendrites of GABAergic granule cells. 1994

W L Liu, and M T Shipley
Department of Anatomy, University of Maryland School of Medicine, Baltimore 21201-1559.

The intrabulbar associational system (IAS) originates from tufted cells whose axons terminate in the internal plexiform layer (IPL) on the opposite side of the same olfactory bulb. The postsynaptic targets of the IAS are unknown. Subpopulations of tufted cells contain different neuropeptides and transmitters but it is not known if tufted cells forming the IAS are homogeneous with respect to neurotransmitters. Therefore, the goals of the present study were to identify the postsynaptic targets of the IAS and to determine the major transmitter in this intrabulbar circuit. Biocytin anterograde tracing revealed that the axons of superficially situated tufted cells coursed directly to the IPL where they turned abruptly to run ventrally and dorsally to terminate in the IPL on the opposite side of the olfactory bulb. WGAapoHRP-Au retrograde tracing combined with immunohistochemistry for CCK revealed that all tufted cells retrogradely labeled by WGAapoHRP-Au injection in the IPL were immunoreactive for CCK. Anterograde transport of biocytin combined with postembedding immunocytochemical gold-labeling for GABA demonstrated that labeled IAS axons terminate predominantly, if not exclusively, on GABAergic granule cell dendrites in the IPL. These results confirm that the IAS arises from tufted cells and is topographically organized. We further demonstrate that tufted cells forming the IAS use the neuropeptide CCK as a transmitter. In addition, we show that the postsynaptic targets of the CCKergic IAS are the dendrites of GABAergic granule cells coursing through the IPL toward the EPL. As CCK is generally an excitatory neuropeptide, we suggest that the IAS functions to excite topographically discrete populations of granule cells. This action may lead to inhibition of equally discrete populations of mitral/tufted cells. Thus, the IAS may be an intrabulbar inhibitory circuit that coordinates topographically organized neural networks in the olfactory bulb.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008239 Lysine An essential amino acid. It is often added to animal feed. Enisyl,L-Lysine,Lysine Acetate,Lysine Hydrochloride,Acetate, Lysine,L Lysine
D008297 Male Males
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D009830 Olfactory Bulb Ovoid body resting on the CRIBRIFORM PLATE of the ethmoid bone where the OLFACTORY NERVE terminates. The olfactory bulb contains several types of nerve cells including the mitral cells, on whose DENDRITES the olfactory nerve synapses, forming the olfactory glomeruli. The accessory olfactory bulb, which receives the projection from the VOMERONASAL ORGAN via the vomeronasal nerve, is also included here. Accessory Olfactory Bulb,Olfactory Tract,Bulbus Olfactorius,Lateral Olfactory Tract,Main Olfactory Bulb,Olfactory Glomerulus,Accessory Olfactory Bulbs,Bulb, Accessory Olfactory,Bulb, Main Olfactory,Bulb, Olfactory,Bulbs, Accessory Olfactory,Bulbs, Main Olfactory,Bulbs, Olfactory,Glomerulus, Olfactory,Lateral Olfactory Tracts,Main Olfactory Bulbs,Olfactorius, Bulbus,Olfactory Bulb, Accessory,Olfactory Bulb, Main,Olfactory Bulbs,Olfactory Bulbs, Accessory,Olfactory Bulbs, Main,Olfactory Tract, Lateral,Olfactory Tracts,Olfactory Tracts, Lateral,Tract, Lateral Olfactory,Tract, Olfactory,Tracts, Lateral Olfactory,Tracts, Olfactory
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D002766 Cholecystokinin A peptide, of about 33 amino acids, secreted by the upper INTESTINAL MUCOSA and also found in the central nervous system. It causes gallbladder contraction, release of pancreatic exocrine (or digestive) enzymes, and affects other gastrointestinal functions. Cholecystokinin may be the mediator of satiety. Pancreozymin,CCK-33,Cholecystokinin 33,Uropancreozymin
D003712 Dendrites Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS. Dendrite
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt

Related Publications

W L Liu, and M T Shipley
September 1983, The Journal of comparative neurology,
W L Liu, and M T Shipley
October 2008, The Journal of neuroscience : the official journal of the Society for Neuroscience,
W L Liu, and M T Shipley
June 1974, Electroencephalography and clinical neurophysiology,
W L Liu, and M T Shipley
February 2017, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!