Translocation of vesicles from squid axoplasm on flagellar microtubules. 1985

S P Gilbert, and R D Allen, and R D Sloboda

Directed intracellular particle movement is a fundamental process characteristic of all cells. During fast axonal transport, membranous organelles move at rapid rates, from 1 to 5 micron s-1, in either the orthograde or retrograde direction along the neurone and can traverse distances as long as 1 m (for reviews, see refs 1-3). Recent studies indicate that this extreme example of intracellular motility can occur along single microtubules, but the molecules generating the motile force have not been identified or localized. It is not known whether the force-transducing 'motor' is associated with the moving particle or with the microtubule lattice. To distinguish between these hypotheses and to characterize the membrane-cytoskeletal interactions that occur during vesicle translocations, we have developed a reconstituted model for microtubule-based motility. We isolated axoplasmic vesicles from the giant axon of the squid Loligo pealei as described previously. The vesicles (35-475 nm in diameter) were then added to axonemes of Arbacia punctulata spermatozoa that served as a source of microtubules. Axonemes were used because the tubulin subunit lattice of the A-subfibre of a given outer doublet is the same as the subunit lattice of neuronal microtubules along which motility occurs. Moreover, all the microtubules of a single axoneme show the same structural polarity, indicating that the axoneme represents an oriented microtubule substrate. Here we demonstrate that vesicle motility is ATP-dependent, that it is not mediated by the flagellar force-transducing molecule dynein and that the direction of movement is not specified by microtubule polarity.

UI MeSH Term Description Entries
D008870 Microtubules Slender, cylindrical filaments found in the cytoskeleton of plant and animal cells. They are composed of the protein TUBULIN and are influenced by TUBULIN MODULATORS. Microtubule
D009068 Movement The act, process, or result of passing from one place or position to another. It differs from LOCOMOTION in that locomotion is restricted to the passing of the whole body from one place to another, while movement encompasses both locomotion but also a change of the position of the whole body or any of its parts. Movement may be used with reference to humans, vertebrate and invertebrate animals, and microorganisms. Differentiate also from MOTOR ACTIVITY, movement associated with behavior. Movements
D002474 Cell-Free System A fractionated cell extract that maintains a biological function. A subcellular fraction isolated by ultracentrifugation or other separation techniques must first be isolated so that a process can be studied free from all of the complex side reactions that occur in a cell. The cell-free system is therefore widely used in cell biology. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p166) Cellfree System,Cell Free System,Cell-Free Systems,Cellfree Systems,System, Cell-Free,System, Cellfree,Systems, Cell-Free,Systems, Cellfree
D003594 Cytoplasmic Granules Condensed areas of cellular material that may be bounded by a membrane. Cytoplasmic Granule,Granule, Cytoplasmic,Granules, Cytoplasmic
D004398 Dyneins A family of multi-subunit cytoskeletal motor proteins that use the energy of ATP hydrolysis, generated by a ring of AAA ATPASES in the dynein heavy chain, to power a variety of cellular functions. Dyneins fall into two major classes based upon structural and functional criteria. ATPase, Dynein,Adenosinetriphosphatase, Dynein,Dynein,Dynein ATPase,Dynein Adenosinetriphosphatase,Dynein Heavy Chain,Dynein Intermediate Chain,Dynein Light Chain,Dynein Light Intermediate Chain,Adenosine Triphosphatase, Dynein,Dynein Heavy Chains,Dynein Intermediate Chains,Dynein Light Chains,Dynein Light Intermediate Chains,Chain, Dynein Heavy,Chain, Dynein Intermediate,Chain, Dynein Light,Chains, Dynein Heavy,Chains, Dynein Intermediate,Chains, Dynein Light,Dynein Adenosine Triphosphatase,Heavy Chain, Dynein,Heavy Chains, Dynein,Intermediate Chain, Dynein,Intermediate Chains, Dynein,Light Chain, Dynein,Light Chains, Dynein
D005407 Flagella A whiplike motility appendage present on the surface cells. Prokaryote flagella are composed of a protein called FLAGELLIN. Bacteria can have a single flagellum, a tuft at one pole, or multiple flagella covering the entire surface. In eukaryotes, flagella are threadlike protoplasmic extensions used to propel flagellates and sperm. Flagella have the same basic structure as CILIA but are longer in proportion to the cell bearing them and present in much smaller numbers. (From King & Stansfield, A Dictionary of Genetics, 4th ed) Flagellum
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D001370 Axonal Transport The directed transport of ORGANELLES and molecules along nerve cell AXONS. Transport can be anterograde (from the cell body) or retrograde (toward the cell body). (Alberts et al., Molecular Biology of the Cell, 3d ed, pG3) Axoplasmic Flow,Axoplasmic Transport,Axoplasmic Streaming,Axonal Transports,Axoplasmic Flows,Axoplasmic Transports,Streaming, Axoplasmic,Transport, Axonal,Transport, Axoplasmic,Transports, Axonal,Transports, Axoplasmic

Related Publications

S P Gilbert, and R D Allen, and R D Sloboda
October 1992, The Biological bulletin,
S P Gilbert, and R D Allen, and R D Sloboda
February 1985, Cell,
S P Gilbert, and R D Allen, and R D Sloboda
January 1988, Cell motility and the cytoskeleton,
S P Gilbert, and R D Allen, and R D Sloboda
January 2013, Methods in cell biology,
S P Gilbert, and R D Allen, and R D Sloboda
November 2000, Journal of cell science,
S P Gilbert, and R D Allen, and R D Sloboda
January 1991, Journal of cell science. Supplement,
S P Gilbert, and R D Allen, and R D Sloboda
August 1985, The Journal of cell biology,
S P Gilbert, and R D Allen, and R D Sloboda
June 1956, The Journal of comparative neurology,
S P Gilbert, and R D Allen, and R D Sloboda
December 1985, The Journal of cell biology,
S P Gilbert, and R D Allen, and R D Sloboda
August 1975, The Journal of general physiology,
Copied contents to your clipboard!