Fast axonal transport of foreign synaptic vesicles in squid axoplasm. 1985

T A Schroer, and S T Brady, and R B Kelly

Translocation of intracellular organelles requires interaction with the cellular cytoskeleton, but the membrane and cytoskeletal proteins involved in movement are unknown. Here we show that highly purified synaptic vesicles from electric fish added to extruded squid axoplasm can show ATP-dependent movement. The movement is indistinguishable from that of endogenous vesicles and has a slight preference for the orthograde direction. In the presence of a nonhydrolyzable ATP analog, the synaptic vesicles bind to axoplasmic fibers but do not move. Elastase treatment of vesicles inhibits both binding and movement. We conclude that a protein component on the surface of cholinergic synaptic vesicles from electric fish is conserved during evolution and so can be recognized by the organelle-translocating machinery of the squid axon, resulting in ATP-dependent movement. Synaptic vesicles apparently retain the capacity for fast axonal transport, even after they reach their intracellular destination.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D010196 Pancreatic Elastase A protease of broad specificity, obtained from dried pancreas. Molecular weight is approximately 25,000. The enzyme breaks down elastin, the specific protein of elastic fibers, and digests other proteins such as fibrin, hemoglobin, and albumin. EC 3.4.21.36. Elastase,Pancreatopeptidase,Elastase I,Pancreatic Elastase I,Elastase I, Pancreatic,Elastase, Pancreatic
D011402 Pronase A proteolytic enzyme obtained from Streptomyces griseus. Pronase E,Pronase P,Protease XIV,XIV, Protease
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D004557 Electric Organ In about 250 species of electric fishes, modified muscle fibers forming disklike multinucleate plates arranged in stacks like batteries in series and embedded in a gelatinous matrix. A large torpedo ray may have half a million plates. Muscles in different parts of the body may be modified, i.e., the trunk and tail in the electric eel, the hyobranchial apparatus in the electric ray, and extrinsic eye muscles in the stargazers. Powerful electric organs emit pulses in brief bursts several times a second. They serve to stun prey and ward off predators. A large torpedo ray can produce of shock of more than 200 volts, capable of stunning a human. (Storer et al., General Zoology, 6th ed, p672) Electric Organs,Organ, Electric,Organs, Electric
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic

Related Publications

T A Schroer, and S T Brady, and R B Kelly
January 1995, Brain research bulletin,
T A Schroer, and S T Brady, and R B Kelly
December 1982, Science (New York, N.Y.),
T A Schroer, and S T Brady, and R B Kelly
January 2016, Methods in cell biology,
T A Schroer, and S T Brady, and R B Kelly
February 1990, Proceedings of the National Academy of Sciences of the United States of America,
T A Schroer, and S T Brady, and R B Kelly
November 2000, Journal of cell science,
T A Schroer, and S T Brady, and R B Kelly
October 1999, The Biological bulletin,
T A Schroer, and S T Brady, and R B Kelly
December 1982, Science (New York, N.Y.),
T A Schroer, and S T Brady, and R B Kelly
August 1984, The Journal of cell biology,
T A Schroer, and S T Brady, and R B Kelly
January 1985, Nature,
T A Schroer, and S T Brady, and R B Kelly
June 1996, Synapse (New York, N.Y.),
Copied contents to your clipboard!