Mapping protein-RNA interactions by RCAP, RNA-cross-linking and peptide fingerprinting. 2015

Robert C Vaughan, and C Cheng Kao
Department of Molecular and Cellular Biochemistry, Indiana University, 212 S. Hawthorne St., 201A Simon Hall, Bloomington, IN, 47405, USA, robvaugh@indiana.edu.

RNA nanotechnology often feature protein RNA complexes. The interaction between proteins and large RNAs are difficult to study using traditional structure-based methods like NMR or X-ray crystallography. RCAP, an approach that uses reversible-cross-linking affinity purification method coupled with mass spectrometry, has been developed to map regions within proteins that contact RNA. This chapter details how RCAP is applied to map protein-RNA contacts within virions.

UI MeSH Term Description Entries
D010449 Peptide Mapping Analysis of PEPTIDES that are generated from the digestion or fragmentation of a protein or mixture of PROTEINS, by ELECTROPHORESIS; CHROMATOGRAPHY; or MASS SPECTROMETRY. The resulting peptide fingerprints are analyzed for a variety of purposes including the identification of the proteins in a sample, GENETIC POLYMORPHISMS, patterns of gene expression, and patterns diagnostic for diseases. Fingerprints, Peptide,Peptide Fingerprinting,Protein Fingerprinting,Fingerprints, Protein,Fingerprint, Peptide,Fingerprint, Protein,Fingerprinting, Peptide,Fingerprinting, Protein,Mapping, Peptide,Peptide Fingerprint,Peptide Fingerprints,Protein Fingerprint,Protein Fingerprints
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002846 Chromatography, Affinity A chromatographic technique that utilizes the ability of biological molecules, often ANTIBODIES, to bind to certain ligands specifically and reversibly. It is used in protein biochemistry. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Bioaffinity,Immunochromatography,Affinity Chromatography,Bioaffinity Chromatography
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated
D016601 RNA-Binding Proteins Proteins that bind to RNA molecules. Included here are RIBONUCLEOPROTEINS and other proteins whose function is to bind specifically to RNA. Double-Stranded RNA-Binding Protein,Double-Stranded RNA-Binding Proteins,ds RNA-Binding Protein,RNA-Binding Protein,ds RNA-Binding Proteins,Double Stranded RNA Binding Protein,Double Stranded RNA Binding Proteins,Protein, Double-Stranded RNA-Binding,Protein, ds RNA-Binding,RNA Binding Protein,RNA Binding Proteins,RNA-Binding Protein, Double-Stranded,RNA-Binding Protein, ds,RNA-Binding Proteins, Double-Stranded,ds RNA Binding Protein
D018360 Crystallography, X-Ray The study of crystal structure using X-RAY DIFFRACTION techniques. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) X-Ray Crystallography,Crystallography, X Ray,Crystallography, Xray,X Ray Crystallography,Xray Crystallography,Crystallographies, X Ray,X Ray Crystallographies
D019906 Nuclear Magnetic Resonance, Biomolecular NMR spectroscopy on small- to medium-size biological macromolecules. This is often used for structural investigation of proteins and nucleic acids, and often involves more than one isotope. Biomolecular Nuclear Magnetic Resonance,Heteronuclear Nuclear Magnetic Resonance,NMR Spectroscopy, Protein,NMR, Biomolecular,NMR, Heteronuclear,NMR, Multinuclear,Nuclear Magnetic Resonance, Heteronuclear,Protein NMR Spectroscopy,Biomolecular NMR,Heteronuclear NMR,Multinuclear NMR,NMR Spectroscopies, Protein,Protein NMR Spectroscopies,Spectroscopies, Protein NMR,Spectroscopy, Protein NMR
D025941 Protein Interaction Mapping Methods for determining interaction between PROTEINS. Interaction Mapping, Protein,Interaction Mappings, Protein,Mapping, Protein Interaction,Mappings, Protein Interaction,Protein Interaction Mappings

Related Publications

Robert C Vaughan, and C Cheng Kao
January 1989, Methods in enzymology,
Robert C Vaughan, and C Cheng Kao
January 2005, Analytical and bioanalytical chemistry,
Robert C Vaughan, and C Cheng Kao
November 2004, The Journal of biological chemistry,
Robert C Vaughan, and C Cheng Kao
May 2001, Biochemistry,
Robert C Vaughan, and C Cheng Kao
July 2001, The Journal of biological chemistry,
Robert C Vaughan, and C Cheng Kao
January 1989, Methods in enzymology,
Robert C Vaughan, and C Cheng Kao
January 1988, Methods in enzymology,
Robert C Vaughan, and C Cheng Kao
November 2015, Methods (San Diego, Calif.),
Robert C Vaughan, and C Cheng Kao
January 2020, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!