Uptake of 2',3'-dideoxyadenosine in human immunodeficiency virus-infected and noninfected human cells. 1989

R P Agarwal, and M E Busso, and A M Mian, and L Resnick
Department of Oncology, University of Miami School of Medicine, FL 33101.

The uptake of 2',3'-dideoxyadenosine was examined in a human immunodeficiency virus (HIV) infected and uninfected T cell line (H9 cells), a B cell line (Namalwa), and in normal peripheral blood mononuclear cells. After a 10-minute incubation at ambient temperature, the intracellular 2',3'-dideoxyadenosine-derived radioactivity was 8- to 16-fold higher than the extracellular radioactivity. In metabolically inactive cells (0 degrees C), the intracellular and extracellular 2',3'-dideoxyadenosine-derived radioactivities were nearly equal. In infected and noninfected H9 cells, a large excess of p-nitrobenzylmercaptopurine riboside or pyrimidine nucleosides weakly inhibited the uptake of 2',3'-dideoxyadenosine (7-30%), whereas deoxycoformycin was a stronger inhibitor (50-80%). Purine nucleosides minimally enhanced the uptake (10-20%). The cellular uptake was not associated with the accumulation of dideoxyadenosine triphosphate. In normal peripheral blood mononuclear cells, the uptake of 2',3'-dideoxyadenosine was inhibited by all agents except 2'-deoxyadenosine (15% enhancement). In contrast to H9 cells, the formation and accumulation of dideoxyadenosine triphosphate paralleled the uptake of dideoxyadenosine. The results of these studies suggest that the major route of transport of 2',3'-dideoxyadenosine into cells is by simple diffusion and that different metabolic patterns exist among cell lines and normal peripheral blood mononuclear cells. An understanding of these cellular differences could aid in the development of therapeutic strategies directed against HIV.

UI MeSH Term Description Entries
D009705 Nucleosides Purine or pyrimidine bases attached to a ribose or deoxyribose. (From King & Stansfield, A Dictionary of Genetics, 4th ed) Nucleoside,Nucleoside Analog,Nucleoside Analogs,Analog, Nucleoside,Analogs, Nucleoside
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003839 Deoxyadenosines Adenosine molecules which can be substituted in any position, but are lacking one hydroxyl group in the ribose part of the molecule. Adenine Deoxyribonucleosides,Adenylyldeoxyribonucleosides,Deoxyadenosine Derivatives,Deoxyribonucleosides, Adenine,Derivatives, Deoxyadenosine
D004058 Diffusion The tendency of a gas or solute to pass from a point of higher pressure or concentration to a point of lower pressure or concentration and to distribute itself throughout the available space. Diffusion, especially FACILITATED DIFFUSION, is a major mechanism of BIOLOGICAL TRANSPORT. Diffusions
D006678 HIV Human immunodeficiency virus. A non-taxonomic and historical term referring to any of two species, specifically HIV-1 and/or HIV-2. Prior to 1986, this was called human T-lymphotropic virus type III/lymphadenopathy-associated virus (HTLV-III/LAV). From 1986-1990, it was an official species called HIV. Since 1991, HIV was no longer considered an official species name; the two species were designated HIV-1 and HIV-2. AIDS Virus,HTLV-III,Human Immunodeficiency Viruses,Human T-Cell Lymphotropic Virus Type III,Human T-Lymphotropic Virus Type III,LAV-HTLV-III,Lymphadenopathy-Associated Virus,Acquired Immune Deficiency Syndrome Virus,Acquired Immunodeficiency Syndrome Virus,Human Immunodeficiency Virus,Human T Cell Lymphotropic Virus Type III,Human T Lymphotropic Virus Type III,Human T-Cell Leukemia Virus Type III,Immunodeficiency Virus, Human,Immunodeficiency Viruses, Human,Virus, Human Immunodeficiency,Viruses, Human Immunodeficiency,AIDS Viruses,Human T Cell Leukemia Virus Type III,Lymphadenopathy Associated Virus,Lymphadenopathy-Associated Viruses,Virus, AIDS,Virus, Lymphadenopathy-Associated,Viruses, AIDS,Viruses, Lymphadenopathy-Associated
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000163 Acquired Immunodeficiency Syndrome An acquired defect of cellular immunity associated with infection by the human immunodeficiency virus (HIV), a CD4-positive T-lymphocyte count under 200 cells/microliter or less than 14% of total lymphocytes, and increased susceptibility to opportunistic infections and malignant neoplasms. Clinical manifestations also include emaciation (wasting) and dementia. These elements reflect criteria for AIDS as defined by the CDC in 1993. AIDS,Immunodeficiency Syndrome, Acquired,Immunologic Deficiency Syndrome, Acquired,Acquired Immune Deficiency Syndrome,Acquired Immuno-Deficiency Syndrome,Acquired Immuno Deficiency Syndrome,Acquired Immuno-Deficiency Syndromes,Acquired Immunodeficiency Syndromes,Immuno-Deficiency Syndrome, Acquired,Immuno-Deficiency Syndromes, Acquired,Immunodeficiency Syndromes, Acquired,Syndrome, Acquired Immuno-Deficiency,Syndrome, Acquired Immunodeficiency,Syndromes, Acquired Immuno-Deficiency,Syndromes, Acquired Immunodeficiency
D000998 Antiviral Agents Agents used in the prophylaxis or therapy of VIRUS DISEASES. Some of the ways they may act include preventing viral replication by inhibiting viral DNA polymerase; binding to specific cell-surface receptors and inhibiting viral penetration or uncoating; inhibiting viral protein synthesis; or blocking late stages of virus assembly. Antiviral,Antiviral Agent,Antiviral Drug,Antivirals,Antiviral Drugs,Agent, Antiviral,Agents, Antiviral,Drug, Antiviral,Drugs, Antiviral
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures

Related Publications

R P Agarwal, and M E Busso, and A M Mian, and L Resnick
December 1989, Ophthalmology,
R P Agarwal, and M E Busso, and A M Mian, and L Resnick
May 1990, Clinical pharmacology and therapeutics,
R P Agarwal, and M E Busso, and A M Mian, and L Resnick
April 1988, The Journal of biological chemistry,
R P Agarwal, and M E Busso, and A M Mian, and L Resnick
June 1997, Antimicrobial agents and chemotherapy,
R P Agarwal, and M E Busso, and A M Mian, and L Resnick
September 2017, The American journal of tropical medicine and hygiene,
R P Agarwal, and M E Busso, and A M Mian, and L Resnick
February 2018, The American journal of tropical medicine and hygiene,
R P Agarwal, and M E Busso, and A M Mian, and L Resnick
January 1991, Cancer chemotherapy and pharmacology,
Copied contents to your clipboard!