Metabolism and anti-human immunodeficiency virus-1 activity of 2-halo-2',3'-dideoxyadenosine derivatives. 1988

T Haertle, and C J Carrera, and D B Wasson, and L C Sowers, and D D Richman, and D A Carson
Department of Basic and Clinical Research, Research Institute of Scripps Clinic, La Jolla, California 92037.

Both 2',3'-dideoxyadenosine and 2',3'-dideoxyinosine have been shown (Mitsuya, H., and Broder, S. (1987) Nature 325, 773-778) to have in vitro activity against the human immunodeficiency virus-1 (HIV). However, these dideoxynucleosides may be catabolized by human T cells, even when adenosine deaminase is inhibited by deoxycoformycin. To overcome this problem, we have synthesized the 2-fluoro-, 2-chloro-, and 2-bromo-derivatives of 2',3'-dideoxyadenosine. The metabolism and anti-HIV activity of the 2-halo-2',3'-dideoxyadenosine derivatives and of 2',3'-dideoxyadenosine were compared. The 2-halo-2',3'-dideoxyadenosine derivatives were not deaminated significantly by cultured CEM T lymphoblasts. Experiments with 2-chloro-2',3'-dideoxyadenosine showed that the T cells converted the dideoxynucleoside to the 5'-monophosphate, 5'-diphosphate, and 5'-triphosphate metabolites. At concentrations lower than those producing cytotoxicity in uninfected cells (3-10 microM), the 2-halo-2',3-dideoxyadenosine derivatives inhibited the cytopathic effects of HIV toward MT-2 T lymphoblasts, and retarded viral replication in CEM T lymphoblasts. Experiments with a deoxycytidine kinase-deficient mutant CEM T cell line showed that this enzyme was necessary for the phosphorylation and anti-HIV activity of the 2-chloro-2',3'-dideoxyadenosine. In contrast, 2',3'-dideoxyadenosine was phosphorylated by the deoxycytidine kinase-deficient mutant and retained anti-HIV activity in this cell line. Thus, the 2-halo derivatives of 2',3'-dideoxyadenosine, in contrast to 2',3'-dideoxyadenosine itself, are not catabolized by T cells. Their anti-HIV and anti-proliferative activities are manifest only in cells expressing deoxycytidine kinase. The in vivo implications of these results for anti-HIV chemotherapy are discussed.

UI MeSH Term Description Entries
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003070 Coformycin A ribonucleoside antibiotic synergist and adenosine deaminase inhibitor isolated from Nocardia interforma and Streptomyces kaniharaensis. It is proposed as an antineoplastic synergist and immunosuppressant.
D003839 Deoxyadenosines Adenosine molecules which can be substituted in any position, but are lacking one hydroxyl group in the ribose part of the molecule. Adenine Deoxyribonucleosides,Adenylyldeoxyribonucleosides,Deoxyadenosine Derivatives,Deoxyribonucleosides, Adenine,Derivatives, Deoxyadenosine
D003842 Deoxycytidine Kinase An enzyme that catalyzes reversibly the phosphorylation of deoxycytidine with the formation of a nucleoside diphosphate and deoxycytidine monophosphate. Cytosine arabinoside can also act as an acceptor. All natural nucleoside triphosphates, except deoxycytidine triphosphate, can act as donors. The enzyme is induced by some viruses, particularly the herpes simplex virus (HERPESVIRUS HOMINIS). EC 2.7.1.74. Kinase, Deoxycytidine
D006678 HIV Human immunodeficiency virus. A non-taxonomic and historical term referring to any of two species, specifically HIV-1 and/or HIV-2. Prior to 1986, this was called human T-lymphotropic virus type III/lymphadenopathy-associated virus (HTLV-III/LAV). From 1986-1990, it was an official species called HIV. Since 1991, HIV was no longer considered an official species name; the two species were designated HIV-1 and HIV-2. AIDS Virus,HTLV-III,Human Immunodeficiency Viruses,Human T-Cell Lymphotropic Virus Type III,Human T-Lymphotropic Virus Type III,LAV-HTLV-III,Lymphadenopathy-Associated Virus,Acquired Immune Deficiency Syndrome Virus,Acquired Immunodeficiency Syndrome Virus,Human Immunodeficiency Virus,Human T Cell Lymphotropic Virus Type III,Human T Lymphotropic Virus Type III,Human T-Cell Leukemia Virus Type III,Immunodeficiency Virus, Human,Immunodeficiency Viruses, Human,Virus, Human Immunodeficiency,Viruses, Human Immunodeficiency,AIDS Viruses,Human T Cell Leukemia Virus Type III,Lymphadenopathy Associated Virus,Lymphadenopathy-Associated Viruses,Virus, AIDS,Virus, Lymphadenopathy-Associated,Viruses, AIDS,Viruses, Lymphadenopathy-Associated
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000659 AMP Deaminase An enzyme that catalyzes the deamination of AMP to IMP. EC 3.5.4.6. AMP Aminase,Adenylate Deaminase,5'-AMP Deaminase,AMP Aminohydrolase,Myoadenylate Deaminase,5' AMP Deaminase,Aminase, AMP,Aminohydrolase, AMP,Deaminase, 5'-AMP,Deaminase, AMP,Deaminase, Adenylate,Deaminase, Myoadenylate
D013601 T-Lymphocytes Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen. T Cell,T Lymphocyte,T-Cells,Thymus-Dependent Lymphocytes,Cell, T,Cells, T,Lymphocyte, T,Lymphocyte, Thymus-Dependent,Lymphocytes, T,Lymphocytes, Thymus-Dependent,T Cells,T Lymphocytes,T-Cell,T-Lymphocyte,Thymus Dependent Lymphocytes,Thymus-Dependent Lymphocyte
D014779 Virus Replication The process of intracellular viral multiplication, consisting of the synthesis of PROTEINS; NUCLEIC ACIDS; and sometimes LIPIDS, and their assembly into a new infectious particle. Viral Replication,Replication, Viral,Replication, Virus,Replications, Viral,Replications, Virus,Viral Replications,Virus Replications

Related Publications

T Haertle, and C J Carrera, and D B Wasson, and L C Sowers, and D D Richman, and D A Carson
November 1994, Molecular pharmacology,
T Haertle, and C J Carrera, and D B Wasson, and L C Sowers, and D D Richman, and D A Carson
January 1991, Cancer chemotherapy and pharmacology,
T Haertle, and C J Carrera, and D B Wasson, and L C Sowers, and D D Richman, and D A Carson
October 1989, AIDS research and human retroviruses,
T Haertle, and C J Carrera, and D B Wasson, and L C Sowers, and D D Richman, and D A Carson
July 1991, Molecular pharmacology,
T Haertle, and C J Carrera, and D B Wasson, and L C Sowers, and D D Richman, and D A Carson
October 1996, Antimicrobial agents and chemotherapy,
T Haertle, and C J Carrera, and D B Wasson, and L C Sowers, and D D Richman, and D A Carson
May 1990, Clinical pharmacology and therapeutics,
T Haertle, and C J Carrera, and D B Wasson, and L C Sowers, and D D Richman, and D A Carson
June 1997, Antimicrobial agents and chemotherapy,
T Haertle, and C J Carrera, and D B Wasson, and L C Sowers, and D D Richman, and D A Carson
August 1999, Antimicrobial agents and chemotherapy,
T Haertle, and C J Carrera, and D B Wasson, and L C Sowers, and D D Richman, and D A Carson
July 1995, Biochemical pharmacology,
Copied contents to your clipboard!