Multiple electrosensory maps in the medulla of weakly electric gymnotiform fish. I. Physiological differences. 1989

C A Shumway
Neurobiology Unit, Scripps Institution of Oceanography, UCSD, La Jolla, California 92093.

The electrosensory lateral line lobe in the weakly electric gymnotiform fish Eigenmannia contains 3 topographic maps of high-frequency (tuberous) electroreceptive information from the body surface. The maps receive identical primary afferent input since axonal collaterals of both amplitude- and phase-coding afferents project to all 3 maps (Heiligenberg and Dye, 1982). Response properties of the amplitude-coding pyramidal neurons in the multiple maps were investigated in order to determine whether the maps differ physiologically. Units in the lateral map have larger receptive fields and are more sensitive than units in the centromedial map. The former units respond more phasically and with shorter latencies to step changes in stimulus amplitude (measured from the stimulus onset to the maximum response). Although 75% of pyramidal cells in all maps show a center-surround receptive-field organization, the strength of the inhibitory surround varies among maps, tending to be weakest for units in the lateral map and strongest for units in the centromedial map. Pyramidal neurons also differ in their responses with respect to the temporal frequency of amplitude modulations; the majority of units in the lateral map prefer high temporal frequencies, while those in the centromedial map prefer low frequencies. These results suggest that the multiple electrosensory maps could provide the initial separation of spatial and temporal processing of sensory information, much as has been suggested for X and Y ganglion cells in the cat retina (Shapley and Perry, 1986). The centromedial map could provide high spatial contrast with correspondingly poor temporal resolution, while the more sensitive units in the lateral map could best provide information about temporal changes in stimulus amplitude.

UI MeSH Term Description Entries
D008526 Medulla Oblongata The lower portion of the BRAIN STEM. It is inferior to the PONS and anterior to the CEREBELLUM. Medulla oblongata serves as a relay station between the brain and the spinal cord, and contains centers for regulating respiratory, vasomotor, cardiac, and reflex activities. Accessory Cuneate Nucleus,Ambiguous Nucleus,Arcuate Nucleus of the Medulla,Arcuate Nucleus-1,External Cuneate Nucleus,Lateral Cuneate Nucleus,Nucleus Ambiguus,Ambiguus, Nucleus,Arcuate Nucleus 1,Arcuate Nucleus-1s,Cuneate Nucleus, Accessory,Cuneate Nucleus, External,Cuneate Nucleus, Lateral,Medulla Oblongatas,Nucleus, Accessory Cuneate,Nucleus, Ambiguous,Nucleus, External Cuneate,Nucleus, Lateral Cuneate
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D004056 Differential Threshold The smallest difference which can be discriminated between two stimuli or one which is barely above the threshold. Difference Limen,Just-Noticeable Difference,Weber-Fechner Law,Difference Limens,Difference, Just-Noticeable,Differences, Just-Noticeable,Differential Thresholds,Just Noticeable Difference,Just-Noticeable Differences,Law, Weber-Fechner,Limen, Difference,Limens, Difference,Threshold, Differential,Thresholds, Differential,Weber Fechner Law
D004555 Electric Fish Fishes which generate an electric discharge. The voltage of the discharge varies from weak to strong in various groups of fish. The ELECTRIC ORGAN and electroplax are of prime interest in this group. They occur in more than one family. Mormyrid,Mormyridae,Elephantfish,Elephantfishes,Fish, Electric,Mormyrids
D000222 Adaptation, Physiological The non-genetic biological changes of an organism in response to challenges in its ENVIRONMENT. Adaptation, Physiologic,Adaptations, Physiologic,Adaptations, Physiological,Adaptive Plasticity,Phenotypic Plasticity,Physiological Adaptation,Physiologic Adaptation,Physiologic Adaptations,Physiological Adaptations,Plasticity, Adaptive,Plasticity, Phenotypic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012677 Sensation The process in which specialized SENSORY RECEPTOR CELLS transduce peripheral stimuli (physical or chemical) into NERVE IMPULSES which are then transmitted to the various sensory centers in the CENTRAL NERVOUS SYSTEM. Sensory Function,Organoleptic,Function, Sensory,Functions, Sensory,Sensations,Sensory Functions

Related Publications

C A Shumway
July 2013, The Journal of experimental biology,
C A Shumway
February 2014, Current opinion in neurobiology,
C A Shumway
June 2006, Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology,
C A Shumway
January 2019, Frontiers in integrative neuroscience,
C A Shumway
February 2017, Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology,
C A Shumway
September 1989, The Journal of experimental biology,
Copied contents to your clipboard!