Electrosensory maps form a substrate for the distributed and parallel control of behavioral responses in weakly electric fish. 1988

W Heiligenberg
Neurobiology Unit, Scripps Institution of Oceanography, University of California, San Diego, La Jolla.

Electroreceptors, distributed over the body surface of weakly electric fish, code the local amplitude and phase, or timing of zerocrossing, of the animal's electric signals. These signals are generated by rhythmic discharges of the electric organ and form a dipole-like field around the animal. This field is perturbed by interference with electric fields of other fish as well as by the appearance of objects electrically different from water. The spatial and temporal structure of such perturbations can be interpreted as the electric image of interfering fields and moving objects. This strategy of assessing the environment is called 'electrolocation', a form of 'seeing' with the body surface. Electric images are analyzed in somatotopically ordered strata of neurons within the central nervous system. Primary electrosensory afferents project to somatotopically ordered layers of higher-order neurons in the electrosensory lateral line lobe (ELL) of the hindbrain. Phase and amplitude information are processed in separate layers of the ELL. The phase of the signal in a given region of the body surface is coded by the timing of spikes of spherical cells marking the zerocrossings of the electric signal. This phase information is relayed to lamina 6 of the torus semicircularis of the midbrain. Rises and falls in local amplitude are coded by the activity of different pyramidal cell types, E- and I-units, which project to various laminae of the torus above and below lamina 6. The somatotopic organization of the torus allows for computations of spatial patterns in electrosensory information. Within lamina 6, differences in the phase of signals from different parts of the body surface are computed. Differential-phase information is then relayed to deeper laminae of the torus and remains in topographic register with amplitude information. This organization allows for joint evaluation of spatially related patterns of amplitude and phase modulations on the animal's body surface within local neuronal circuits of the torus. A topographic projection of the torus relays amplitude and differential-phase information to the optic tectum where a further joint evaluation of amplitude and phase serves to control behavioral responses. The control of a particular behavioral performance, the 'jamming avoidance response', is of a distributed nature in that the representations of individual sites on the body surface contribute cumulatively to shift the electric organ pacemaker frequency.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D008959 Models, Neurological Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Neurologic Models,Model, Neurological,Neurologic Model,Neurological Model,Neurological Models,Model, Neurologic,Models, Neurologic
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D011984 Sensory Receptor Cells Specialized afferent neurons capable of transducing sensory stimuli into NERVE IMPULSES to be transmitted to the CENTRAL NERVOUS SYSTEM. Sometimes sensory receptors for external stimuli are called exteroceptors; for internal stimuli are called interoceptors and proprioceptors. Nerve Endings, Sensory,Neurons, Sensory,Neuroreceptors,Receptors, Neural,Neural Receptors,Receptors, Sensory,Sensory Neurons,Sensory Receptors,Nerve Ending, Sensory,Neural Receptor,Neuron, Sensory,Neuroreceptor,Receptor Cell, Sensory,Receptor Cells, Sensory,Receptor, Neural,Receptor, Sensory,Sensory Nerve Ending,Sensory Nerve Endings,Sensory Neuron,Sensory Receptor,Sensory Receptor Cell
D004555 Electric Fish Fishes which generate an electric discharge. The voltage of the discharge varies from weak to strong in various groups of fish. The ELECTRIC ORGAN and electroplax are of prime interest in this group. They occur in more than one family. Mormyrid,Mormyridae,Elephantfish,Elephantfishes,Fish, Electric,Mormyrids
D004557 Electric Organ In about 250 species of electric fishes, modified muscle fibers forming disklike multinucleate plates arranged in stacks like batteries in series and embedded in a gelatinous matrix. A large torpedo ray may have half a million plates. Muscles in different parts of the body may be modified, i.e., the trunk and tail in the electric eel, the hyobranchial apparatus in the electric ray, and extrinsic eye muscles in the stargazers. Powerful electric organs emit pulses in brief bursts several times a second. They serve to stun prey and ward off predators. A large torpedo ray can produce of shock of more than 200 volts, capable of stunning a human. (Storer et al., General Zoology, 6th ed, p672) Electric Organs,Organ, Electric,Organs, Electric
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

W Heiligenberg
February 2014, Current opinion in neurobiology,
W Heiligenberg
December 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience,
W Heiligenberg
December 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience,
W Heiligenberg
January 2019, Frontiers in integrative neuroscience,
W Heiligenberg
June 2006, Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology,
W Heiligenberg
January 1995, Journal of comparative physiology. A, Sensory, neural, and behavioral physiology,
W Heiligenberg
July 2013, The Journal of experimental biology,
W Heiligenberg
November 2004, Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology,
Copied contents to your clipboard!