Bioconversion of (-)-epicatechin, (+)-epicatechin, (-)-catechin, and (+)-catechin by (-)-epigallocatechin-metabolizing bacteria. 2015

Akiko Takagaki, and Fumio Nanjo
Food Research Laboratories, Mitsui Norin Co., Ltd.

Bioconversion of (-)-epicatechin (-EC), (+)-epicatechin (+EC), (-)-catechin (-C), and (+)-catechin (+C) by (-)-epigallocatechin (-EGC)-metabolizing bacteria, Adlercreutzia equolifaciens MT4s-5, Eggerthella lenta JCM 9979, and Flavonifractor plautii MT42, was investigated. A. equolifaciens MT4s-5 could catalyze C ring cleavage to form (2S)-1-(3,4-dihydroxyphenyl)-3-(2,4,6-trihydroxyphenyl)propan-2-ol (1S) from -EC and -C, and (2R)-1-(3,4-dihydroxyphenyl)-3-(2,4,6-trihydroxyphenyl)propan-2-ol (1R) from +C. The C ring cleavage by A. equolifaciens MT4s-5 was accelerated in the presence of hydrogen. E. lenta JCM 9979 also catalyzed C ring cleavage of -EC and +C to produce 1S and 1R, respectively. In the presence of hydrogen or formate, strain JCM 9979 showed not only stimulation of C ring cleavage but also subsequent 4'-dehydroxylation of 1S and 1R to produce (2S)-1-(3-hydroxyphenyl)-3-(2,4,6-trihydroxyphenyl)propan-2-ol (2S) and (2R)-1-(3-hydroxyphenyl)-3-(2,4,6-trihydroxyphenyl)propan-2-ol (2R), respectively. On the other hand, A. equolifaciens MT4s-5 did not show any 4'-dehydroxylation ability even in the presence of hydrogen. F. plautii MT42 could convert 1S, 1R, 2S, and 2R into their corresponding 4-hydroxy-5-hydroxyphenylvaleric acids and 5-hydroxyphenyl-γ-valerolactones simultaneously. Similar bioconversion was observed by F. plautii ATCC 29863 and F. plautii ATCC 49531.

UI MeSH Term Description Entries
D002392 Catechin An antioxidant flavonoid, occurring especially in woody plants as both (+)-catechin and (-)-epicatechin (cis) forms. Catechinic Acid,Catechuic Acid,(+)-Catechin,(+)-Cyanidanol,(+)-Cyanidanol-3,(-)-Epicatechin,(2R,3R)-2-(3,4-Dihydroxyphenyl)-3,5,7-chromanetriol,2H-1-Benzopyran-3,5,7-triol, 2-(3,4-dihydroxyphenyl)-3,4-dihydro-, (2R-cis)-,3,3',4',5,7-Flavanpentol,Catergen,Cianidanol,Cyanidanol-3,Epicatechin,KB-53,Z 7300,Zyma,Cyanidanol 3,KB 53,KB53
D003013 Clostridium A genus of motile or nonmotile gram-positive bacteria of the family Clostridiaceae. Many species have been identified with some being pathogenic. They occur in water, soil, and in the intestinal tract of humans and lower animals.
D006900 Hydroxylation Placing of a hydroxyl group on a compound in a position where one did not exist before. (Stedman, 26th ed) Hydroxylations
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria
D001711 Biotransformation The chemical alteration of an exogenous substance by or in a biological system. The alteration may inactivate the compound or it may result in the production of an active metabolite of an inactive parent compound. The alterations may be divided into METABOLIC DETOXICATION, PHASE I and METABOLIC DETOXICATION, PHASE II.
D019149 Bioreactors Tools or devices for generating products using the synthetic or chemical conversion capacity of a biological system. They can be classical fermentors, cell culture perfusion systems, or enzyme bioreactors. For production of proteins or enzymes, recombinant microorganisms such as bacteria, mammalian cells, or insect or plant cells are usually chosen. Fermentors,Bioreactor,Fermentor
D039903 Actinobacteria Class of BACTERIA with diverse morphological properties. Strains of Actinobacteria show greater than 80% 16S rDNA/rRNA sequence similarity among each other and also the presence of certain signature nucleotides. (Stackebrandt E. et al, Int. J. Syst. Bacteriol. (1997) 47:479-491) Actinomycete,Actinomycetes,Gram-Positive Bacteria, High G+C,High G+C Gram-Positive Bacteria

Related Publications

Akiko Takagaki, and Fumio Nanjo
May 2010, Journal of cellular biochemistry,
Akiko Takagaki, and Fumio Nanjo
May 2009, Journal of chromatography. A,
Akiko Takagaki, and Fumio Nanjo
November 2020, Journal of agricultural and food chemistry,
Akiko Takagaki, and Fumio Nanjo
March 2003, Bioorganic & medicinal chemistry letters,
Copied contents to your clipboard!