Routine 18F-2-deoxy-2-fluoro-D-glucose (18F-FDG) myocardial tomography using a normal large field of view gamma-camera. 1989

F Höflin, and H Ledermann, and U Noelpp, and R Weinreich, and H Rösler
University of Berne, Dept. of Nuclear Medicine, Inselspital, Switzerland.

There is a recent need to study glucose metabolism of the heart in ischemic, as well as in "hibernating or stunned" myocardium, and compare it with that in perfusion studies. In non-positron emission tomography centers, positron imaging is possible with a standard Anger-type camera if proper collimation and adequate shielding of the camera crystal can be achieved. For the study with fast-decaying isotopes, seven-pinhole tomography (7PHT), a limited-angle method designed for transaxial tomography of the left ventricle using a nonrotating camera, is well suited, because projections are acquired simultaneously. Individual adjustment (patient supine) of the camera's view axis (CAx) with the left ventricular axis (LVAx) gives excellent results: sensitivity for CHD 82%, specificity 72% in a prospective 201TI study (48 patients, x-ray coronarography as reference). Good alignment of CAx with LVAx is also achieved with the patient prone in LAO in a hammock above the camera surface. In this setting additional lead shielding of the camera is possible using a table reinforced with 5 cm of lead with a central hole for the 7PH-collimator, which has a special lead inlay. This allows utilization of the 511 KeV emitter 18F-FDG, which with a half-life of 109 minutes, can be transported a reasonable distance from the production site. System sensitivity and resolution for 18F was found comparable to 201Tl, 99mTc, and 123I using a phantom. First clinical examinations after 201Tl stress/redistribution studies showed increased 18F-FDG uptake in ischemic heart segments, as well as in "hibernating" nonperfused or "stunned" myocardium.

UI MeSH Term Description Entries
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D003837 Deoxy Sugars Sugars that in which one or more hydroxyl groups of the pyranose or furanose ring is substituted by hydrogen. Deoxy Sugar,Sugar, Deoxy,Sugars, Deoxy
D003847 Deoxyglucose 2-Deoxy-D-arabino-hexose. An antimetabolite of glucose with antiviral activity. 2-Deoxy-D-glucose,2-Deoxyglucose,2-Desoxy-D-glucose,2 Deoxy D glucose,2 Deoxyglucose,2 Desoxy D glucose
D005462 Fluorine Radioisotopes Unstable isotopes of fluorine that decay or disintegrate emitting radiation. F atoms with atomic weights 17, 18, and 20-22 are radioactive fluorine isotopes. Radioisotopes, Fluorine
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D015899 Tomography, Emission-Computed, Single-Photon A method of computed tomography that uses radionuclides which emit a single photon of a given energy. The camera is rotated 180 or 360 degrees around the patient to capture images at multiple positions along the arc. The computer is then used to reconstruct the transaxial, sagittal, and coronal images from the 3-dimensional distribution of radionuclides in the organ. The advantages of SPECT are that it can be used to observe biochemical and physiological processes as well as size and volume of the organ. The disadvantage is that, unlike positron-emission tomography where the positron-electron annihilation results in the emission of 2 photons at 180 degrees from each other, SPECT requires physical collimation to line up the photons, which results in the loss of many available photons and hence degrades the image. CAT Scan, Single-Photon Emission,CT Scan, Single-Photon Emission,Radionuclide Tomography, Single-Photon Emission-Computed,SPECT,Single-Photon Emission-Computed Tomography,Tomography, Single-Photon, Emission-Computed,Single-Photon Emission CT Scan,Single-Photon Emission Computer-Assisted Tomography,Single-Photon Emission Computerized Tomography,CAT Scan, Single Photon Emission,CT Scan, Single Photon Emission,Emission-Computed Tomography, Single-Photon,Radionuclide Tomography, Single Photon Emission Computed,Single Photon Emission CT Scan,Single Photon Emission Computed Tomography,Single Photon Emission Computer Assisted Tomography,Single Photon Emission Computerized Tomography,Tomography, Single-Photon Emission-Computed
D015902 Gamma Cameras Electronic instruments that produce photographs or cathode-ray tube images of the gamma-ray emissions from organs containing radionuclide tracers. Scintillation Cameras,Nuclear Cameras,Scinti-Cameras,Camera, Gamma,Camera, Nuclear,Camera, Scintillation,Cameras, Gamma,Cameras, Nuclear,Cameras, Scintillation,Gamma Camera,Nuclear Camera,Scinti Cameras,Scinti-Camera,Scintillation Camera
D019788 Fluorodeoxyglucose F18 The compound is given by intravenous injection to do POSITRON-EMISSION TOMOGRAPHY for the assessment of cerebral and myocardial glucose metabolism in various physiological or pathological states including stroke and myocardial ischemia. It is also employed for the detection of malignant tumors including those of the brain, liver, and thyroid gland. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1162) 18F Fluorodeoxyglucose,18FDG,2-Fluoro-2-deoxy-D-glucose,2-Fluoro-2-deoxyglucose,Fludeoxyglucose F 18,18F-FDG,Fluorine-18-fluorodeoxyglucose,Fluorodeoxyglucose F 18,2 Fluoro 2 deoxy D glucose,2 Fluoro 2 deoxyglucose,F 18, Fludeoxyglucose,F 18, Fluorodeoxyglucose,F18, Fluorodeoxyglucose,Fluorine 18 fluorodeoxyglucose,Fluorodeoxyglucose, 18F

Related Publications

F Höflin, and H Ledermann, and U Noelpp, and R Weinreich, and H Rösler
March 2008, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine,
F Höflin, and H Ledermann, and U Noelpp, and R Weinreich, and H Rösler
January 2012, ILAR journal,
F Höflin, and H Ledermann, and U Noelpp, and R Weinreich, and H Rösler
September 2009, Bioorganic & medicinal chemistry letters,
F Höflin, and H Ledermann, and U Noelpp, and R Weinreich, and H Rösler
January 1986, Research in experimental medicine. Zeitschrift fur die gesamte experimentelle Medizin einschliesslich experimenteller Chirurgie,
F Höflin, and H Ledermann, and U Noelpp, and R Weinreich, and H Rösler
May 2002, Molecular imaging and biology,
F Höflin, and H Ledermann, and U Noelpp, and R Weinreich, and H Rösler
August 1996, Geburtshilfe und Frauenheilkunde,
F Höflin, and H Ledermann, and U Noelpp, and R Weinreich, and H Rösler
February 2003, Kaku igaku. The Japanese journal of nuclear medicine,
F Höflin, and H Ledermann, and U Noelpp, and R Weinreich, and H Rösler
January 1988, International journal of radiation applications and instrumentation. Part A, Applied radiation and isotopes,
F Höflin, and H Ledermann, and U Noelpp, and R Weinreich, and H Rösler
October 1990, The American journal of physiology,
F Höflin, and H Ledermann, and U Noelpp, and R Weinreich, and H Rösler
May 2021, European journal of nuclear medicine and molecular imaging,
Copied contents to your clipboard!