An NMR-based molecular dynamics simulation of the interaction of the lac repressor headpiece and its operator in aqueous solution. 1989

J de Vlieg, and H J Berendsen, and W F van Gunsteren
Laboratory of Physical Chemistry, University of Groningen, Groningen, The Netherlands.

The results of a 125 psec molecular dynamics simulation of a lac headpiece-operator complex in aqueous solution are reported. The complex satisfies essentially all experimental distance information derived from two-dimensional nuclear magnetic resonance (2-D-NMR) studies. The interaction between lac repressor headpiece and its operator is based on many direct- and water-mediated hydrogen bonds and nonpolar contacts which allow the formation of a tight complex. No stable hydrogen bonds between side chains and bases are found, while specific contacts occur between both nonpolar groups and, to a lesser extent, through water-mediated hydrogen bonds. The simulated complex structure in water is intrinsically stable without application of nuclear Overhauser effect (NOE) distance restraints, while being compatible with most of the available biochemical, genetic, and chemically induced dynamic nuclear polarization (CIDNP) data.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D009875 Operator Regions, Genetic The regulatory elements of an OPERON to which activators or repressors bind thereby effecting the transcription of GENES in the operon. Operator Region,Operator Regions,Operator, Genetic,Genetic Operator,Genetic Operator Region,Genetic Operator Regions,Genetic Operators,Operator Region, Genetic,Operators, Genetic,Region, Genetic Operator,Region, Operator,Regions, Genetic Operator,Regions, Operator
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D006860 Hydrogen Bonding A low-energy attractive force between hydrogen and another element. It plays a major role in determining the properties of water, proteins, and other compounds. Hydrogen Bonds,Bond, Hydrogen,Hydrogen Bond
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining

Related Publications

J de Vlieg, and H J Berendsen, and W F van Gunsteren
January 1988, Protein sequences & data analysis,
J de Vlieg, and H J Berendsen, and W F van Gunsteren
January 1982, Proceedings of the National Academy of Sciences of the United States of America,
J de Vlieg, and H J Berendsen, and W F van Gunsteren
July 1990, Biochemistry,
J de Vlieg, and H J Berendsen, and W F van Gunsteren
July 1990, Biochemical pharmacology,
J de Vlieg, and H J Berendsen, and W F van Gunsteren
October 1988, FEBS letters,
J de Vlieg, and H J Berendsen, and W F van Gunsteren
December 1999, Structure (London, England : 1993),
J de Vlieg, and H J Berendsen, and W F van Gunsteren
January 1982, The EMBO journal,
J de Vlieg, and H J Berendsen, and W F van Gunsteren
May 1983, European journal of biochemistry,
J de Vlieg, and H J Berendsen, and W F van Gunsteren
April 1989, Biochemistry,
J de Vlieg, and H J Berendsen, and W F van Gunsteren
October 1981, Nucleic acids research,
Copied contents to your clipboard!