Maternal protein restriction reduces perlecan at mid-metanephrogenesis in rats. 2016

Xiao-Shan Tang, and Qian Shen, and Jing Chen, and Xi-Liang Zha, and Hong Xu
Department of Nephrology and Rheumatology, Children's Hospital of Fudan University, Shanghai, China.

OBJECTIVE Maternal dietary protein restriction reduces nephron number in offspring and increases the risk of cardiovascular and chronic kidney diseases. Perlecan is the major basement membrane/extracellular matrix heparan sulfate proteoglycan (HSPG) that plays a crucial role in nephron formation. This study was to determine whether maternal dietary protein restriction during pregnancy leads to an abnormal perlecan expression pattern during kidney development and a correlation with aberrant cell proliferation and apoptosis. METHODS Pregnant Sprague-Dawley rats were divided into two groups, maintained on either a low-protein diet (MLP group) or a normal-protein diet (MNP group). Kidneys were dissected from embryos of different kidney development stages. Real-time PCR and immunohistochemistry were performed to detect the transcript level of rHSPG2, the coding gene of perlecan, and its protein expression pattern. Apoptosis and proliferation cell were detected by TUNEL system and Ki67 marker. RESULTS Embryonic weights and nephron number were significantly affected by maternal low protein diets. The transcript level of rHSPG2 in the MLP group was significantly lower at embryonic day 18 and the neonatal period. Immunohistochemistry study was consistent with the RT-PCR results. The proliferation level of the MLP group was significantly lower than the MNP group at E18 and more apoptotic cells was detected in MLP newborn. CONCLUSIONS Maternal protein restriction reduced the expression of perlecan and lead aberrant cell proliferation and apoptosis during mid-metanephrogenesis in offspring. This data may provide new evidence to understand the mechanism of reduced nephron number due to maternal protein restriction and enlighten solution.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D009399 Nephrons The functional units of the kidney, consisting of the glomerulus and the attached tubule. Nephron
D009752 Nutritional Status State of the body in relation to the consumption and utilization of nutrients. Nutrition Status,Status, Nutrition,Status, Nutritional
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D005260 Female Females
D005865 Gestational Age The age of the conceptus, beginning from the time of FERTILIZATION. In clinical obstetrics, the gestational age is often estimated from the onset of the last MENSTRUATION which is about 2 weeks before OVULATION and fertilization. It is also estimated to begin from fertilization, estrus, coitus, or artificial insemination. Embryologic Age,Fetal Maturity, Chronologic,Chronologic Fetal Maturity,Fetal Age,Maturity, Chronologic Fetal,Age, Embryologic,Age, Fetal,Age, Gestational,Ages, Embryologic,Ages, Fetal,Ages, Gestational,Embryologic Ages,Fetal Ages,Gestational Ages
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000824 Animal Nutritional Physiological Phenomena Nutritional physiology of animals. Animal Nutrition Physiology,Animal Nutritional Physiology Phenomena,Animal Nutritional Physiological Phenomenon,Animal Nutritional Physiology,Animal Nutritional Physiology Phenomenon,Veterinary Nutritional Physiology,Nutrition Physiologies, Animal,Nutrition Physiology, Animal,Nutritional Physiology, Animal,Nutritional Physiology, Veterinary,Physiology, Animal Nutrition,Physiology, Animal Nutritional,Physiology, Veterinary Nutritional
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D015536 Down-Regulation A negative regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins. Receptor Down-Regulation,Down-Regulation (Physiology),Downregulation,Down Regulation,Down-Regulation, Receptor

Related Publications

Xiao-Shan Tang, and Qian Shen, and Jing Chen, and Xi-Liang Zha, and Hong Xu
April 2002, Kidney international,
Xiao-Shan Tang, and Qian Shen, and Jing Chen, and Xi-Liang Zha, and Hong Xu
September 2002, Toxicology,
Xiao-Shan Tang, and Qian Shen, and Jing Chen, and Xi-Liang Zha, and Hong Xu
January 2010, Kidney & blood pressure research,
Xiao-Shan Tang, and Qian Shen, and Jing Chen, and Xi-Liang Zha, and Hong Xu
September 2003, Pediatric research,
Xiao-Shan Tang, and Qian Shen, and Jing Chen, and Xi-Liang Zha, and Hong Xu
January 2020, Journal of nutritional science and vitaminology,
Xiao-Shan Tang, and Qian Shen, and Jing Chen, and Xi-Liang Zha, and Hong Xu
March 2021, Animals : an open access journal from MDPI,
Xiao-Shan Tang, and Qian Shen, and Jing Chen, and Xi-Liang Zha, and Hong Xu
October 2005, American journal of physiology. Regulatory, integrative and comparative physiology,
Xiao-Shan Tang, and Qian Shen, and Jing Chen, and Xi-Liang Zha, and Hong Xu
November 2007, Pediatric nephrology (Berlin, Germany),
Xiao-Shan Tang, and Qian Shen, and Jing Chen, and Xi-Liang Zha, and Hong Xu
December 2022, The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstetricians,
Xiao-Shan Tang, and Qian Shen, and Jing Chen, and Xi-Liang Zha, and Hong Xu
January 2003, Metabolism: clinical and experimental,
Copied contents to your clipboard!