Alternative channels for urea in the inner medulla of the rat kidney. 2015

C Michele Nawata, and William H Dantzler, and Thomas L Pannabecker
Department of Physiology, University of Arizona Health Sciences Center, Tucson, Arizona cmnawata@email.arizona.edu.

The ascending thin limbs (ATLs) and lower descending thin limbs (DTLs) of Henle's loop in the inner medulla of the rat are highly permeable to urea, and yet no urea transporters have been identified in these sections. We hypothesized that novel, yet-unidentified transporters in these tubule segments could explain the high urea permeability. cDNAs encoding for Na(+)-glucose transporter 1a (SGLT1a), Na(+)-glucose transporter 1 (NaGLT1), urea transporter (UT)-A2c, and UT-A2d were isolated and cloned from the Munich-Wistar rat inner medulla. SGLT1a is a novel NH2-terminal truncated variant of SGLT1. NaGLT1 is a Na(+)-dependent glucose transporter primarily located in the proximal tubules and not previously described in the thin limbs. UT-A2c and UT-A2d are novel variants of UT-A2. UT-A2c is truncated at the COOH terminus, and UT-A2d has one exon skipped. When rats underwent water restriction for 72 h, mRNA levels of SGLT1a increased in ATLs, NaGLT1 levels increased in both ATLs and DTLs, and UT-A2c increased in ATLs. [(14)C]urea uptake assays performed on Xenopus oocytes heterologously expressing these proteins revealed that despite having structural differences from their full-length versions, SGLT1a, UT-A2c, and UT-A2d enhanced urea uptake. NaGLT1 also facilitated urea uptake. Uptakes were Na(+) independent and inhibitable by phloretin and/or phloridzin. Our data indicate that there are several alternative channels for urea in the rat inner medulla that could potentially contribute to the high urea permeabilities in thin limb segments.

UI MeSH Term Description Entries
D007679 Kidney Medulla The internal portion of the kidney, consisting of striated conical masses, the renal pyramids, whose bases are adjacent to the cortex and whose apices form prominent papillae projecting into the lumen of the minor calyces. Kidney Papilla,Kidney Medullas,Kidney Papillas,Medulla, Kidney,Medullas, Kidney,Papilla, Kidney,Papillas, Kidney
D008138 Loop of Henle The U-shaped portion of the renal tubule in the KIDNEY MEDULLA, consisting of a descending limb and an ascending limb. It is situated between the PROXIMAL KIDNEY TUBULE and the DISTAL KIDNEY TUBULE. Ascending Limb of Loop of Henle,Descending Limb of Loop of Henle,Henle Loop
D008297 Male Males
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D010539 Permeability Property of membranes and other structures to permit passage of light, heat, gases, liquids, metabolites, and mineral ions. Permeabilities
D003681 Dehydration The condition that results from excessive loss of water from a living organism. Water Stress,Stress, Water
D005260 Female Females
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression

Related Publications

C Michele Nawata, and William H Dantzler, and Thomas L Pannabecker
September 1967, Acta endocrinologica,
C Michele Nawata, and William H Dantzler, and Thomas L Pannabecker
February 1989, The American journal of physiology,
C Michele Nawata, and William H Dantzler, and Thomas L Pannabecker
December 1997, The American journal of physiology,
C Michele Nawata, and William H Dantzler, and Thomas L Pannabecker
September 2016, The American journal of the medical sciences,
C Michele Nawata, and William H Dantzler, and Thomas L Pannabecker
August 2005, Molecular and cellular biology,
C Michele Nawata, and William H Dantzler, and Thomas L Pannabecker
April 1987, Biochemical and biophysical research communications,
C Michele Nawata, and William H Dantzler, and Thomas L Pannabecker
July 1989, Biochemical and biophysical research communications,
C Michele Nawata, and William H Dantzler, and Thomas L Pannabecker
October 2004, American journal of physiology. Renal physiology,
C Michele Nawata, and William H Dantzler, and Thomas L Pannabecker
October 1983, Biochimica et biophysica acta,
C Michele Nawata, and William H Dantzler, and Thomas L Pannabecker
February 2010, Bulletin of mathematical biology,
Copied contents to your clipboard!