Human disorders of peroxisome metabolism and biogenesis. 2016

Hans R Waterham, and Sacha Ferdinandusse, and Ronald J A Wanders
Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, The Netherlands. Electronic address: h.r.waterham@amc.uva.nl.

Peroxisomes are dynamic organelles that play an essential role in a variety of cellular catabolic and anabolic metabolic pathways, including fatty acid alpha- and beta-oxidation, and plasmalogen and bile acid synthesis. Defects in genes encoding peroxisomal proteins can result in a large variety of peroxisomal disorders either affecting specific metabolic pathways, i.e., the single peroxisomal enzyme deficiencies, or causing a generalized defect in function and assembly of peroxisomes, i.e., peroxisome biogenesis disorders. In this review, we discuss the clinical, biochemical, and genetic aspects of all human peroxisomal disorders currently known.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010955 Plasmalogens GLYCEROPHOSPHOLIPIDS in which one of the two acyl chains is attached to glycerol with an ether alkenyl linkage instead of an ester as with the other glycerophospholipids. Phosphatidal Compounds,Plasmalogen,Alkenyl Ether Phospholipids,Compounds, Phosphatidal,Ether Phospholipids, Alkenyl,Phospholipids, Alkenyl Ether
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000074183 ATPases Associated with Diverse Cellular Activities A large highly conserved family of ATPases with diverse functions in cells that are characterized by the presence of a P-LOOP and a ring shape. They couple the energy generated by ATP hydrolysis to remodeling or mechanical translocation of their target molecules. AAA ATPase,AAA Protease,AAA+ ATPase,AAA+ Protease,AAA ATPases,AAA Proteases,AAA+ ATPases,AAA+ Proteases,ATPase, AAA,ATPase, AAA+,ATPases, AAA+,Protease, AAA,Protease, AAA+,Proteases, AAA,Proteases, AAA+
D001678 Organelle Biogenesis The natural growth and development within living CELLS. Mitochondrial Biogenesis,Biogeneses, Organelle,Biogenesis, Mitochondrial,Biogenesis, Organelle,Organelle Biogeneses
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal

Related Publications

Hans R Waterham, and Sacha Ferdinandusse, and Ronald J A Wanders
January 2016, Proceedings of the Japan Academy. Series B, Physical and biological sciences,
Hans R Waterham, and Sacha Ferdinandusse, and Ronald J A Wanders
June 2003, Seikagaku. The Journal of Japanese Biochemical Society,
Hans R Waterham, and Sacha Ferdinandusse, and Ronald J A Wanders
April 2000, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
Hans R Waterham, and Sacha Ferdinandusse, and Ronald J A Wanders
June 2000, FEBS letters,
Hans R Waterham, and Sacha Ferdinandusse, and Ronald J A Wanders
May 2004, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
Hans R Waterham, and Sacha Ferdinandusse, and Ronald J A Wanders
January 2020, Advances in experimental medicine and biology,
Hans R Waterham, and Sacha Ferdinandusse, and Ronald J A Wanders
November 2016, Translational science of rare diseases,
Hans R Waterham, and Sacha Ferdinandusse, and Ronald J A Wanders
January 2003, Annual review of genomics and human genetics,
Hans R Waterham, and Sacha Ferdinandusse, and Ronald J A Wanders
December 2006, Biochimica et biophysica acta,
Hans R Waterham, and Sacha Ferdinandusse, and Ronald J A Wanders
January 1995, Human molecular genetics,
Copied contents to your clipboard!