Characterization of the transcriptional potency of sub-elements of the UAS of the yeast PGK gene in a PGK mini-promoter. 1989

C A Stanway, and A Chambers, and A J Kingsman, and S M Kingsman
Department of Biochemistry, Oxford University, South Parks Road, Oxford.

The upstream activator (UAS) of the yeast PGK gene comprises three different sequence elements. These are 1) a region of strong protein binding called the YFP, 2) three repeats of the motif CTTCC and 3) an essential activator core (AC) sequence that binds the protein RAP1. To assess the function of each of these elements in transcriptional activation we have inserted them individually and in various combinations into a PGK mini-promoter. This comprises only the transcription initiation elements from the PGK promoter and is inactive in the absence of activator sequences. None of the individual sequence elements was capable of activating the mini-promoter. However either the YFP or the CTTCC boxes in conjunction with the AC box resulted in efficient expression. Transcription levels were not however as high as when all three elements were inserted. These data suggest that the efficiency of PGK transcription depends upon the interactions between three different sequences. Furthermore while RAP1 per se is not a transcriptional activator it can associate promiscuously with other factors to create a functional transcription complex.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010735 Phosphoglycerate Kinase An enzyme catalyzing the transfer of a phosphate group from 3-phospho-D-glycerate in the presence of ATP to yield 3-phospho-D-glyceroyl phosphate and ADP. EC 2.7.2.3. Kinase, Phosphoglycerate
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D015966 Gene Expression Regulation, Fungal Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in fungi. Fungal Gene Expression Regulation,Regulation of Gene Expression, Fungal,Regulation, Gene Expression, Fungal
D015971 Gene Expression Regulation, Enzymologic Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in enzyme synthesis. Enzymologic Gene Expression Regulation,Regulation of Gene Expression, Enzymologic,Regulation, Gene Expression, Enzymologic

Related Publications

C A Stanway, and A Chambers, and A J Kingsman, and S M Kingsman
September 1987, Nucleic acids research,
C A Stanway, and A Chambers, and A J Kingsman, and S M Kingsman
August 1987, Nucleic acids research,
C A Stanway, and A Chambers, and A J Kingsman, and S M Kingsman
October 1999, The Biochemical journal,
C A Stanway, and A Chambers, and A J Kingsman, and S M Kingsman
January 1993, DNA and cell biology,
C A Stanway, and A Chambers, and A J Kingsman, and S M Kingsman
April 1987, The Journal of biological chemistry,
C A Stanway, and A Chambers, and A J Kingsman, and S M Kingsman
January 1983, Cold Spring Harbor symposia on quantitative biology,
C A Stanway, and A Chambers, and A J Kingsman, and S M Kingsman
April 1994, The Journal of veterinary medical science,
C A Stanway, and A Chambers, and A J Kingsman, and S M Kingsman
February 1993, The Journal of biological chemistry,
C A Stanway, and A Chambers, and A J Kingsman, and S M Kingsman
May 2002, FEMS yeast research,
Copied contents to your clipboard!