Atomistic molecular dynamics simulations of typical and atypical antipsychotic drugs at the dopamine D2 receptor (D2R) elucidates their inhibition mechanism. 2017

Ramin Ekhteiari Salmas, and Mine Yurtsever, and Serdar Durdagi
a Department of Biophysics , School of Medicine, Bahcesehir University , Istanbul , Turkey.

Dopamine D2 receptor (D2R) plays a pivotal role in nervous systems. Its dysfunction leads to the schizophrenia, Parkinson's diseases and drug addiction. Since the crystal structure of the D2R was not solved yet, discovering of potent and highly selective anti-psychotic drugs carry challenges for different neurodegenerative diseases. In the current study, we modeled the three-dimensional (3D) structure of the D2R based on a recently crystallized structure of the dopamine D3 receptor. These two receptors share a high amino acid sequence homology (>70%). The interaction of the modeled receptor with well-known atypical and typical anti-psychotic drugs and the inhibition mechanisms of drugs at the catalytic domain were studied via atomistic molecular dynamics simulations. Our results revealed that, class-I and class-II forms of atypical and typical D2R antagonists follow different pathways in the inhibition of the D2Rs.

UI MeSH Term Description Entries
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006860 Hydrogen Bonding A low-energy attractive force between hydrogen and another element. It plays a major role in determining the properties of water, proteins, and other compounds. Hydrogen Bonds,Bond, Hydrogen,Hydrogen Bond
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D014150 Antipsychotic Agents Agents that control agitated psychotic behavior, alleviate acute psychotic states, reduce psychotic symptoms, and exert a quieting effect. They are used in SCHIZOPHRENIA; senile dementia; transient psychosis following surgery; or MYOCARDIAL INFARCTION; etc. These drugs are often referred to as neuroleptics alluding to the tendency to produce neurological side effects, but not all antipsychotics are likely to produce such effects. Many of these drugs may also be effective against nausea, emesis, and pruritus. Antipsychotic,Antipsychotic Agent,Antipsychotic Drug,Antipsychotic Medication,Major Tranquilizer,Neuroleptic,Neuroleptic Agent,Neuroleptic Drug,Neuroleptics,Tranquilizing Agents, Major,Antipsychotic Drugs,Antipsychotic Effect,Antipsychotic Effects,Antipsychotics,Major Tranquilizers,Neuroleptic Agents,Neuroleptic Drugs,Tranquillizing Agents, Major,Agent, Antipsychotic,Agent, Neuroleptic,Drug, Antipsychotic,Drug, Neuroleptic,Effect, Antipsychotic,Major Tranquilizing Agents,Major Tranquillizing Agents,Medication, Antipsychotic,Tranquilizer, Major
D017386 Sequence Homology, Amino Acid The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species. Homologous Sequences, Amino Acid,Amino Acid Sequence Homology,Homologs, Amino Acid Sequence,Homologs, Protein Sequence,Homology, Protein Sequence,Protein Sequence Homologs,Protein Sequence Homology,Sequence Homology, Protein,Homolog, Protein Sequence,Homologies, Protein Sequence,Protein Sequence Homolog,Protein Sequence Homologies,Sequence Homolog, Protein,Sequence Homologies, Protein,Sequence Homologs, Protein
D017448 Receptors, Dopamine D2 A subfamily of G-PROTEIN-COUPLED RECEPTORS that bind the neurotransmitter DOPAMINE and modulate its effects. D2-class receptor genes contain INTRONS, and the receptors inhibit ADENYLYL CYCLASES. Dopamine D2 Receptors,Dopamine-D2 Receptor,D2 Receptors, Dopamine,Dopamine D2 Receptor,Receptor, Dopamine-D2
D056004 Molecular Dynamics Simulation A computer simulation developed to study the motion of molecules over a period of time. Molecular Dynamics Simulations,Molecular Dynamics,Dynamic, Molecular,Dynamics Simulation, Molecular,Dynamics Simulations, Molecular,Dynamics, Molecular,Molecular Dynamic,Simulation, Molecular Dynamics,Simulations, Molecular Dynamics
D065127 Dopamine D2 Receptor Antagonists Compounds and drugs that bind to and inhibit or block the activation of DOPAMINE D2 RECEPTORS. Dopamine D2 Antagonist,Dopamine D2 Receptor Antagonist,Dopamine D2 Antagonists,Receptor Antagonists, Dopamine D2,Antagonist, Dopamine D2,Antagonists, Dopamine D2,D2 Antagonist, Dopamine,D2 Antagonists, Dopamine

Related Publications

Ramin Ekhteiari Salmas, and Mine Yurtsever, and Serdar Durdagi
February 2005, European journal of medicinal chemistry,
Ramin Ekhteiari Salmas, and Mine Yurtsever, and Serdar Durdagi
May 1993, The Journal of pharmacology and experimental therapeutics,
Ramin Ekhteiari Salmas, and Mine Yurtsever, and Serdar Durdagi
September 1991, Proceedings of the National Academy of Sciences of the United States of America,
Ramin Ekhteiari Salmas, and Mine Yurtsever, and Serdar Durdagi
May 1998, Progress in neuro-psychopharmacology & biological psychiatry,
Ramin Ekhteiari Salmas, and Mine Yurtsever, and Serdar Durdagi
August 1995, Psychopharmacology,
Ramin Ekhteiari Salmas, and Mine Yurtsever, and Serdar Durdagi
February 1992, Lancet (London, England),
Ramin Ekhteiari Salmas, and Mine Yurtsever, and Serdar Durdagi
January 2001, CNS drug reviews,
Ramin Ekhteiari Salmas, and Mine Yurtsever, and Serdar Durdagi
January 2021, Focus (American Psychiatric Publishing),
Ramin Ekhteiari Salmas, and Mine Yurtsever, and Serdar Durdagi
August 2019, Journal of biomolecular structure & dynamics,
Copied contents to your clipboard!