Ca2+-dependent facilitated shortening in isotonic contraction of trachealis muscle. 1989

R W Mitchell, and S M Koenig, and E Kelly, and N L Stephens, and A R Leff
Department of Medicine, University of Chicago, Illinois 60637.

We compared isotonic shortening with isometric force generation as a function of external Ca2+ in 166 tracheal smooth muscle (TSM) strips from 27 mongrel dogs in vitro. Concentration-response curves were generated with muscarinic stimulation (acetylcholine, ACh), alpha-adrenergic receptor activation (norepinephrine after beta-adrenoceptor blockade, NE), serotonin (5-HT), and KCl-substituted Krebs-Henseleit solution. The concentrations of 5-HT causing half-maximal shortening (ECS50, 1.54 +/- 0.14 X 10(-7) M) and half-maximal active isometric tension (ECT50, 1.72 +/- 0.30 X 10(-7) M) were similar (P = NS). Likewise, ECS50 (21.9 +/- 0.7 mM) and ECT50, (22.0 +/- 0.9 mM) were similar for KCl. In contrast, facilitated isotonic shortening (i.e., greater isotonic shortening for comparable degrees of force generation) was elicited with ACh and NE for all levels of force generation between 15 and 85% of maximum and for all concentrations of ACh from 3 X 10(-8) to 3 X 10(-5) M (P less than 0.05 for all points). Facilitated isotonic shortening also was elicited for all concentrations of NE from 10(-8) to 10(-6) M (P less than 0.05 for all points). Removal of Ca2+ from the perfusate substantially reduced the potency of ACh (P less than 0.001) and abolished differences between ECS50 (2.23 +/- 0.28 X 10(-5) M) and ECT50 (2.50 +/- 0.46 X 10(-5) M, P = NS). We demonstrate that for comparable degrees of force generation, muscarinic and alpha-adrenergic receptor activation cause greater isotonic shortening than KCl or 5-HT and that this facilitated shortening is associated with the concentration of external Ca2+.

UI MeSH Term Description Entries
D007537 Isometric Contraction Muscular contractions characterized by increase in tension without change in length. Contraction, Isometric,Contractions, Isometric,Isometric Contractions
D007551 Isotonic Contraction Muscle contraction with negligible change in the force of contraction but shortening of the distance between the origin and insertion. Contraction, Isotonic,Contractions, Isotonic,Isotonic Contractions
D008297 Male Males
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D011189 Potassium Chloride A white crystal or crystalline powder used in BUFFERS; FERTILIZERS; and EXPLOSIVES. It can be used to replenish ELECTROLYTES and restore WATER-ELECTROLYTE BALANCE in treating HYPOKALEMIA. Slow-K,Chloride, Potassium
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D005260 Female Females
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine

Related Publications

R W Mitchell, and S M Koenig, and E Kelly, and N L Stephens, and A R Leff
August 1993, The American journal of physiology,
R W Mitchell, and S M Koenig, and E Kelly, and N L Stephens, and A R Leff
October 1991, Journal of applied physiology (Bethesda, Md. : 1985),
R W Mitchell, and S M Koenig, and E Kelly, and N L Stephens, and A R Leff
March 2004, Journal of applied physiology (Bethesda, Md. : 1985),
R W Mitchell, and S M Koenig, and E Kelly, and N L Stephens, and A R Leff
October 1994, Journal of applied physiology (Bethesda, Md. : 1985),
R W Mitchell, and S M Koenig, and E Kelly, and N L Stephens, and A R Leff
September 2011, Journal of applied physiology (Bethesda, Md. : 1985),
R W Mitchell, and S M Koenig, and E Kelly, and N L Stephens, and A R Leff
January 2002, Journal of muscle research and cell motility,
R W Mitchell, and S M Koenig, and E Kelly, and N L Stephens, and A R Leff
October 1989, American journal of veterinary research,
R W Mitchell, and S M Koenig, and E Kelly, and N L Stephens, and A R Leff
January 2007, Circulation research,
R W Mitchell, and S M Koenig, and E Kelly, and N L Stephens, and A R Leff
September 1990, Nippon Ganka Gakkai zasshi,
R W Mitchell, and S M Koenig, and E Kelly, and N L Stephens, and A R Leff
January 1983, The Japanese journal of physiology,
Copied contents to your clipboard!