Epithelium- and mucosa-dependent relaxation and contraction of normal equine trachealis muscle in vitro. 1989

L E Olson, and S Z Perkowski, and D E Mason, and W W Muir
Department of Veterinary Physiology and Pharmacology, Ohio State University, Columbus 43210-1092.

Strips of trachealis muscle were dissected from the mid-cervical portion of the trachea from horses that were free of respiratory tract disease. The epithelium and mucosa were removed from one group of tissues and were left intact in a second group of tissues. Each tissue was suspended in a bath filled with Krebs-bicarbonate solution that was aerated with 5% CO2 in oxygen and maintained at 37 degrees C. Isometric tension was continuously recorded. The contractile response to square-wave electrical stimulations increased as frequency (3, 5, 10, 15, 20, 25, and 30 Hz), voltage (10, 15, 18, and 25 V), and pulse duration (0.2, 0.5, 1.0, 1.5, and 2.0 ms) increased in tissues with the epithelium and mucosa intact. A stimulus of 18 V, 20 Hz, and 0.5 ms induced maximal contraction. Atropine (10(-6) M) abolished the response to 18 V and 0.5 ms at all frequencies. The increase in active isometric tension was concentration dependent when acetylcholine (10(-9) to 10(-4) M) was added to the baths in 0.5-logarithmic increments. Tissues that were contracted in response to acetylcholine (10(-5) M) had a concentration-dependent decrease in active isometric tension when isoproterenol was added to the baths in 0.5-logarithmic increments (10(-9) to 10(-4) M). The contraction and relaxation curves were qualitatively similar, but quantitatively different in tissues with and without the epithelium and mucosa. Removing the epithelium and mucosa increased the contractile response to acetylcholine at bath concentrations of 3.1 x 10(-7) M and 10(-6) M. The presence of epithelium and mucosa enhanced the magnitude of isoproterenol-induced relaxations.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007537 Isometric Contraction Muscular contractions characterized by increase in tension without change in length. Contraction, Isometric,Contractions, Isometric,Isometric Contractions
D007545 Isoproterenol Isopropyl analog of EPINEPHRINE; beta-sympathomimetic that acts on the heart, bronchi, skeletal muscle, alimentary tract, etc. It is used mainly as bronchodilator and heart stimulant. Isoprenaline,Isopropylarterenol,4-(1-Hydroxy-2-((1-methylethyl)amino)ethyl)-1,2-benzenediol,Euspiran,Isadrin,Isadrine,Isopropyl Noradrenaline,Isopropylnoradrenaline,Isopropylnorepinephrine,Isoproterenol Hydrochloride,Isoproterenol Sulfate,Isuprel,Izadrin,Norisodrine,Novodrin,Hydrochloride, Isoproterenol,Noradrenaline, Isopropyl,Sulfate, Isoproterenol
D009092 Mucous Membrane An EPITHELIUM with MUCUS-secreting cells, such as GOBLET CELLS. It forms the lining of many body cavities, such as the DIGESTIVE TRACT, the RESPIRATORY TRACT, and the reproductive tract. Mucosa, rich in blood and lymph vessels, comprises an inner epithelium, a middle layer (lamina propria) of loose CONNECTIVE TISSUE, and an outer layer (muscularis mucosae) of SMOOTH MUSCLE CELLS that separates the mucosa from submucosa. Lamina Propria,Mucosa,Mucosal Tissue,Muscularis Mucosae,Mucous Membranes,Membrane, Mucous,Membranes, Mucous,Mucosae, Muscularis,Mucosal Tissues,Propria, Lamina,Tissue, Mucosal,Tissues, Mucosal
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009126 Muscle Relaxation That phase of a muscle twitch during which a muscle returns to a resting position. Muscle Relaxations,Relaxation, Muscle,Relaxations, Muscle
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D006736 Horses Large, hoofed mammals of the family EQUIDAE. Horses are active day and night with most of the day spent seeking and consuming food. Feeding peaks occur in the early morning and late afternoon, and there are several daily periods of rest. Equus caballus,Equus przewalskii,Horse, Domestic,Domestic Horse,Domestic Horses,Horse,Horses, Domestic
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine

Related Publications

L E Olson, and S Z Perkowski, and D E Mason, and W W Muir
February 1989, Journal of applied physiology (Bethesda, Md. : 1985),
L E Olson, and S Z Perkowski, and D E Mason, and W W Muir
October 1992, Journal of applied physiology (Bethesda, Md. : 1985),
L E Olson, and S Z Perkowski, and D E Mason, and W W Muir
February 2009, Georgian medical news,
L E Olson, and S Z Perkowski, and D E Mason, and W W Muir
February 1993, The American review of respiratory disease,
L E Olson, and S Z Perkowski, and D E Mason, and W W Muir
March 1988, Respiration physiology,
L E Olson, and S Z Perkowski, and D E Mason, and W W Muir
August 1995, Journal of biomedical science,
L E Olson, and S Z Perkowski, and D E Mason, and W W Muir
June 1994, Journal of veterinary pharmacology and therapeutics,
L E Olson, and S Z Perkowski, and D E Mason, and W W Muir
August 1999, Journal of autonomic pharmacology,
L E Olson, and S Z Perkowski, and D E Mason, and W W Muir
December 2003, Advances in physiology education,
L E Olson, and S Z Perkowski, and D E Mason, and W W Muir
March 1972, Journal of applied physiology,
Copied contents to your clipboard!