Induction of peroxisomal beta-oxidation in 7800 C1 Morris hepatoma cells in steady state by fatty acids and fatty acid analogues. 1989

O Spydevold, and J Bremer
Institute of Medical Biochemistry, University of Oslo, Norway.

(1) The activities of peroxisomal beta-oxidation and palmitoyl-CoA hydrolase in Morris hepatoma 7800 C1 cells were studied. The cells were grown until they reached steady state (constant DNA content per dish) and then were cultured in the presence of fatty acids or alkylthioacetic acids, i.e., S-substituted fatty acid analogues. (2) The fatty acid analogues increased the activity of the cyanide-insensitive palmitoyl-CoA oxidase several-fold. The effect was dose-dependent; 5 microM tetradecylthioacetic acid (TTA) was sufficient to give a significant induction. With 20 microM TTA, the increase in enzyme activity was discernable after 3 h and reached a maximum after 3 days. The inducing effect of the alkylthioacetic acids increased with the length of the hydrophobic alkyl end of the analogue. The inducing ability disappeared when the fatty acid analogue was omega-oxidized to the corresponding dicarboxylic acid. Oxidation of the sulfur atom resulted in inhibited cellular uptake and abolished enzyme induction. (3) At higher concentrations (0.5-1 mM), normal fatty acids also induced cyanide-insensitive palmitoyl-CoA oxidation. Myristic acid was the most potent inducer, whereas fatty acids with shorter as well as longer carbon chains were less efficient. The inducing effect increased with the number of double bounds in the fatty acid. (4) The normal fatty acids as well as the fatty acid analogues also induced palmitoyl-CoA hydrolase, but the relative changes were much less pronounced than with the palmitoyl-CoA oxidase.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008830 Microbodies Electron-dense cytoplasmic particles bounded by a single membrane, such as PEROXISOMES; GLYOXYSOMES; and glycosomes. Glycosomes,Glycosome,Microbody
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010171 Palmitoyl Coenzyme A A fatty acid coenzyme derivative which plays a key role in fatty acid oxidation and biosynthesis. Palmitoyl CoA,Hexadecanoyl CoA,Palmityl CoA,CoA, Hexadecanoyl,CoA, Palmitoyl,CoA, Palmityl,Coenzyme A, Palmitoyl
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured

Related Publications

O Spydevold, and J Bremer
May 1989, Biochimica et biophysica acta,
O Spydevold, and J Bremer
September 1991, Archives of biochemistry and biophysics,
O Spydevold, and J Bremer
December 1996, Annals of the New York Academy of Sciences,
O Spydevold, and J Bremer
January 1993, Biochimie,
O Spydevold, and J Bremer
January 1981, Methods in enzymology,
Copied contents to your clipboard!