Biological evaluation of N-2-hydroxypropyl trimethyl ammonium chloride chitosan as a carrier for the delivery of live Newcastle disease vaccine. 2016

Kai Zhao, and Yanwei Sun, and Gang Chen, and Guangyu Rong, and Hong Kang, and Zheng Jin, and Xiaohua Wang
School of Biological Science and Technology, University of Jinan, Jinan 250022, People's Republic of China; Key Laboratory of Microbiology, School of Life Science, Heilongjiang University, Harbin 150080, People's Republic of China. Electronic address: zybin395@126.com.

Mucosal immune system plays a very important role in antiviral immune response. We prepared Newcastle disease viruses (NDV) encapsulated in N-2-hydroxypropyl trimethyl ammonium chloride chitosan (N-2-HACC) nanoparticles (NDV/La Sota-N-2-HACC-NPs) by an ionic cross linking method, and assessed the potential of N-2-HACC-NPs as a mucosal immune delivery carrier. The properties of the nanoparticles were determined by transmission electron microscopy, Zeta potential and particle size analysis, encapsulation efficiency and loading capacity. NDV/La Sota-N-2-HACC-NPs have regular spherical morphologies and high stability; with 303.88±49.8nm mean diameter, 45.77±0.75mV Zeta potential, 94.26±0.42% encapsulation efficiency and 54.06±0.21% loading capacity. In vitro release assay indicated that the release of NDV from NDV/La Sota-N-2-HACC-NPs is slow. The NDV/La Sota-N-2-HACC-NPs have good biological characteristics, very low toxicity and high level of safety. Additionally, specific pathogen-free chickens immunized with NDV/La Sota-N-2-HACC-NPs showed much stronger cellular, humoral and mucosal immune responses than commercial attenuated live Newcastle disease vaccine, and NDV/La Sota-N-2-HACC-NPs reached the sustainable release effect. Our study here provides a foundation for the further development of mucosal vaccines and drugs, and the N-2-HACC-NPs should be a potential drug delivery carrier with immense potential in medical applications.

UI MeSH Term Description Entries
D007070 Immunoglobulin A Represents 15-20% of the human serum immunoglobulins, mostly as the 4-chain polymer in humans or dimer in other mammals. Secretory IgA (IMMUNOGLOBULIN A, SECRETORY) is the main immunoglobulin in secretions. IgA,IgA Antibody,IgA1,IgA2,Antibody, IgA
D007074 Immunoglobulin G The major immunoglobulin isotype class in normal human serum. There are several isotype subclasses of IgG, for example, IgG1, IgG2A, and IgG2B. Gamma Globulin, 7S,IgG,IgG Antibody,Allerglobuline,IgG(T),IgG1,IgG2,IgG2A,IgG2B,IgG3,IgG4,Immunoglobulin GT,Polyglobin,7S Gamma Globulin,Antibody, IgG,GT, Immunoglobulin
D007114 Immunization Deliberate stimulation of the host's immune response. ACTIVE IMMUNIZATION involves administration of ANTIGENS or IMMUNOLOGIC ADJUVANTS. PASSIVE IMMUNIZATION involves administration of IMMUNE SERA or LYMPHOCYTES or their extracts (e.g., transfer factor, immune RNA) or transplantation of immunocompetent cell producing tissue (thymus or bone marrow). Immunologic Stimulation,Immunostimulation,Sensitization, Immunologic,Variolation,Immunologic Sensitization,Immunological Stimulation,Sensitization, Immunological,Stimulation, Immunologic,Immunizations,Immunological Sensitization,Immunological Sensitizations,Immunological Stimulations,Sensitizations, Immunological,Stimulation, Immunological,Stimulations, Immunological,Variolations
D007371 Interferon-gamma The major interferon produced by mitogenically or antigenically stimulated LYMPHOCYTES. It is structurally different from TYPE I INTERFERON and its major activity is immunoregulation. It has been implicated in the expression of CLASS II HISTOCOMPATIBILITY ANTIGENS in cells that do not normally produce them, leading to AUTOIMMUNE DISEASES. Interferon Type II,Interferon, Immune,gamma-Interferon,Interferon, gamma,Type II Interferon,Immune Interferon,Interferon, Type II
D008214 Lymphocytes White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS. Lymphoid Cells,Cell, Lymphoid,Cells, Lymphoid,Lymphocyte,Lymphoid Cell
D009522 Newcastle disease virus The most well known avian paramyxovirus in the genus AVULAVIRUS and the cause of a highly infectious pneumoencephalitis in fowl. It is also reported to cause CONJUNCTIVITIS in humans. Transmission is by droplet inhalation or ingestion of contaminated water or food. Avian Paramyxovirus 1,Paramyxovirus 1, Avian
D010316 Particle Size Relating to the size of solids. Particle Sizes,Size, Particle,Sizes, Particle
D011355 Prodrugs A compound that, on administration, must undergo chemical conversion by metabolic processes before becoming the pharmacologically active drug for which it is a prodrug. Drug Precursor,Drug Precursors,Pro-Drug,Prodrug,Pro-Drugs,Precursor, Drug,Precursors, Drug,Pro Drug,Pro Drugs
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D004337 Drug Carriers Forms to which substances are incorporated to improve the delivery and the effectiveness of drugs. Drug carriers are used in drug-delivery systems such as the controlled-release technology to prolong in vivo drug actions, decrease drug metabolism, and reduce drug toxicity. Carriers are also used in designs to increase the effectiveness of drug delivery to the target sites of pharmacological actions. Liposomes, albumin microspheres, soluble synthetic polymers, DNA complexes, protein-drug conjugates, and carrier erythrocytes among others have been employed as biodegradable drug carriers. Drug Carrier

Related Publications

Kai Zhao, and Yanwei Sun, and Gang Chen, and Guangyu Rong, and Hong Kang, and Zheng Jin, and Xiaohua Wang
November 2022, International journal of biological macromolecules,
Kai Zhao, and Yanwei Sun, and Gang Chen, and Guangyu Rong, and Hong Kang, and Zheng Jin, and Xiaohua Wang
September 2017, Carbohydrate polymers,
Kai Zhao, and Yanwei Sun, and Gang Chen, and Guangyu Rong, and Hong Kang, and Zheng Jin, and Xiaohua Wang
January 2018, Molecular pharmaceutics,
Kai Zhao, and Yanwei Sun, and Gang Chen, and Guangyu Rong, and Hong Kang, and Zheng Jin, and Xiaohua Wang
September 2015, International journal of biological macromolecules,
Kai Zhao, and Yanwei Sun, and Gang Chen, and Guangyu Rong, and Hong Kang, and Zheng Jin, and Xiaohua Wang
September 2021, Vaccines,
Kai Zhao, and Yanwei Sun, and Gang Chen, and Guangyu Rong, and Hong Kang, and Zheng Jin, and Xiaohua Wang
February 2008, European journal of medicinal chemistry,
Kai Zhao, and Yanwei Sun, and Gang Chen, and Guangyu Rong, and Hong Kang, and Zheng Jin, and Xiaohua Wang
December 2003, Biomaterials,
Kai Zhao, and Yanwei Sun, and Gang Chen, and Guangyu Rong, and Hong Kang, and Zheng Jin, and Xiaohua Wang
February 2020, Carbohydrate polymers,
Kai Zhao, and Yanwei Sun, and Gang Chen, and Guangyu Rong, and Hong Kang, and Zheng Jin, and Xiaohua Wang
April 2004, International journal of biological macromolecules,
Kai Zhao, and Yanwei Sun, and Gang Chen, and Guangyu Rong, and Hong Kang, and Zheng Jin, and Xiaohua Wang
September 2022, International journal of biological macromolecules,
Copied contents to your clipboard!