Nonadrenergic inhibitory innervation to the airways of the newborn cat. 1989

M A Waldron, and B J Connelly, and J T Fisher
Department of Physiology, Queen's University, Kingston, Ontario, Canada.

Vagal, nonadrenergic inhibitory system (NAIS) innervation to airway smooth muscle has been demonstrated in adults of several species, including humans. However, the functional status of this system in newborns is not known. The NAIS of intestinal smooth muscle has been demonstrated in newborns and develops in parallel with cholinergic innervation (14). Since the lung is derived embryologically from the foregut and cholinergic innervation is operative at birth, we tested the hypothesis that NAIS innervation to the airways is functional in newborn cats. Nineteen cats (2-11 days of age) were anesthetized with chloralose-urethan, and a tracheal cannula was inserted. The chest was opened and the animals were mechanically ventilated. The cervical vagus nerves were separated from the sympathetics, cut, and placed on stimulating electrodes. Mean inspiratory resistance (RL, I) and dynamic compliance (Cdyn, L) were measured on a breath-by-breath basis. Atropine and propranolol were administered (2 mg/kg iv) to block cholinergic and adrenergic pathways, respectively. Subsequently, serotonin infusion was used to increase RL, I approximately 150%. Stimulation (10 s) at frequencies ranging from 2 to 20/s caused a slow-onset (30 s to peak) long-lasting decrease in RL, I and a much smaller increase in Cdyn, L. The magnitude and duration of the bronchodilation increased with stimulus frequency to a plateau at approximately 15/s. At a stimulus frequency of 2/s, RL, I decreased 11 +/- 1.9 vs 36 +/- 4.8% (SE) at 20/s, whereas Cdyn, L increased 2 +/- 1.1 vs. 6 +/- 1.7%, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D011433 Propranolol A widely used non-cardioselective beta-adrenergic antagonist. Propranolol has been used for MYOCARDIAL INFARCTION; ARRHYTHMIA; ANGINA PECTORIS; HYPERTENSION; HYPERTHYROIDISM; MIGRAINE; PHEOCHROMOCYTOMA; and ANXIETY but adverse effects instigate replacement by newer drugs. Dexpropranolol,AY-20694,Anaprilin,Anapriline,Avlocardyl,Betadren,Dociton,Inderal,Obsidan,Obzidan,Propanolol,Propranolol Hydrochloride,Rexigen,AY 20694,AY20694,Hydrochloride, Propranolol
D001980 Bronchi The larger air passages of the lungs arising from the terminal bifurcation of the TRACHEA. They include the largest two primary bronchi which branch out into secondary bronchi, and tertiary bronchi which extend into BRONCHIOLES and PULMONARY ALVEOLI. Primary Bronchi,Primary Bronchus,Secondary Bronchi,Secondary Bronchus,Tertiary Bronchi,Tertiary Bronchus,Bronchi, Primary,Bronchi, Secondary,Bronchi, Tertiary,Bronchus,Bronchus, Primary,Bronchus, Secondary,Bronchus, Tertiary
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D006584 Hexamethonium Compounds Compounds containing the hexamethylenebis(trimethylammonium) cation. Members of this group frequently act as antihypertensive agents and selective ganglionic blocking agents. Compounds, Hexamethonium
D000403 Airway Resistance Physiologically, the opposition to flow of air caused by the forces of friction. As a part of pulmonary function testing, it is the ratio of driving pressure to the rate of air flow. Airway Resistances,Resistance, Airway,Resistances, Airway
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D001285 Atropine An alkaloid, originally from Atropa belladonna, but found in other plants, mainly SOLANACEAE. Hyoscyamine is the 3(S)-endo isomer of atropine. AtroPen,Atropin Augenöl,Atropine Sulfate,Atropine Sulfate Anhydrous,Atropinol,Anhydrous, Atropine Sulfate,Augenöl, Atropin,Sulfate Anhydrous, Atropine,Sulfate, Atropine
D012701 Serotonin A biochemical messenger and regulator, synthesized from the essential amino acid L-TRYPTOPHAN. In humans it is found primarily in the central nervous system, gastrointestinal tract, and blood platelets. Serotonin mediates several important physiological functions including neurotransmission, gastrointestinal motility, hemostasis, and cardiovascular integrity. Multiple receptor families (RECEPTORS, SEROTONIN) explain the broad physiological actions and distribution of this biochemical mediator. 5-HT,5-Hydroxytryptamine,3-(2-Aminoethyl)-1H-indol-5-ol,Enteramine,Hippophaine,Hydroxytryptamine,5 Hydroxytryptamine

Related Publications

M A Waldron, and B J Connelly, and J T Fisher
August 1985, European journal of pharmacology,
M A Waldron, and B J Connelly, and J T Fisher
April 1980, Science (New York, N.Y.),
M A Waldron, and B J Connelly, and J T Fisher
March 1991, The American review of respiratory disease,
M A Waldron, and B J Connelly, and J T Fisher
January 1990, The American review of respiratory disease,
M A Waldron, and B J Connelly, and J T Fisher
June 1979, Gastroenterology,
M A Waldron, and B J Connelly, and J T Fisher
January 1992, The American review of respiratory disease,
M A Waldron, and B J Connelly, and J T Fisher
November 1976, Journal of applied physiology,
M A Waldron, and B J Connelly, and J T Fisher
January 1980, Journal of applied physiology: respiratory, environmental and exercise physiology,
M A Waldron, and B J Connelly, and J T Fisher
June 1986, The American review of respiratory disease,
M A Waldron, and B J Connelly, and J T Fisher
February 1980, The Journal of clinical investigation,
Copied contents to your clipboard!