Mg2+-paracrystal formation of tropomyosin as a condensation phenomenon. Effects of pH, salt, temperature, and troponin binding. 1989

Y Ishii, and S S Lehrer
Department of Muscle Research, Boston Biomedical Research Institute, Massachusetts 02114.

Tropomyosin (Tm) paracrystal formation induced by Mg2+ was studied by monitoring increases in light scattering. Paracrystals formed above a critical Tm concentration with lag phases in the time courses at pH 7.5 and 6.0, indicating that condensation polymerization processes are involved. The kinetic data at pH 7.5 reasonably fit a model in which nucleation and elongation are taken into account. The rate and extent of light scattering increased at low [Mg2+] and decreased at high [Mg2+] with a maximum at [Mg2+] = 15 mM, indicating different effects of Mg2+ in the two [Mg2+] ranges. The paracrystals were destabilized by increasing the salt concentration and decreasing the temperature. Mg2+ produces paracrystals at pH 6.0 and pH 7.5 by different kinetic mechanisms. Different Tm intermolecular interactions at the two pH values were indicated by studies of the excimer fluorescence of pyrene-labeled Tm and by effects of salt and temperature on the kinetics. At pH 6.0 Tm more readily formed paracrystals with decreased electrostatic effects. Effects of troponin on Mg2+-paracrystal formation of Tm at the two pH values correlated with the known differences in paracrystal structure when troponin is bound to Tm.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013050 Spectrometry, Fluorescence Measurement of the intensity and quality of fluorescence. Fluorescence Spectrophotometry,Fluorescence Spectroscopy,Spectrofluorometry,Fluorescence Spectrometry,Spectrophotometry, Fluorescence,Spectroscopy, Fluorescence
D013816 Thermodynamics A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed) Thermodynamic

Related Publications

Y Ishii, and S S Lehrer
April 1974, Journal of biochemistry,
Y Ishii, and S S Lehrer
April 1985, Journal of biochemistry,
Y Ishii, and S S Lehrer
November 1981, Journal of molecular biology,
Y Ishii, and S S Lehrer
January 1984, Journal of biochemistry,
Y Ishii, and S S Lehrer
August 2021, Nature communications,
Y Ishii, and S S Lehrer
June 1977, Journal of biochemistry,
Y Ishii, and S S Lehrer
January 1975, Recent advances in studies on cardiac structure and metabolism,
Y Ishii, and S S Lehrer
October 1978, Journal of biochemistry,
Copied contents to your clipboard!