Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey. 1989

H Barbas, and D N Pandya
Department of Health Sciences, Boston University, Massachusetts 02215.

An investigation of the architectonic organization and intrinsic connections of the prefrontal cortex was conducted in rhesus monkeys. Cytoarchitectonic analysis indicates that in the prefrontal cortex there are two trends of gradual change in laminar characteristics that can be traced from limbic periallocortex towards isocortical areas. The stepwise change in laminar features is characterized by the emergence and gradual increase in the width of granular layer IV, by an increase in the size of pyramidal cells in layers III and V, and by a higher cell-packing density in the supragranular layers. Myeloarchitectonic analysis reveals that the limbic areas are poorly myelinated, adjacent areas have a diffuse myelin content confined to the deep layers, and in isocortices the myelinated fibers are distributed in organized horizontal bands (of Bail-larger) and a vertical plexus. Using the above architectonic criteria, we observed that one of the architectonic trends takes a radial basoventral course from the periallocortex in the caudal orbitofrontal region to the adjacent proisocortex and then to area 13. The next stage of architectonic regions includes orbital areas 12, 11, and 14, which is followed by area 10, lateral area 12, and the rostral part of ventral area 46. The last group includes the caudal part of ventral area 46 and ventral area 8. The other trend takes a mediodorsal course from the periallocortex around the rostral portion of the corpus callosum to the adjacent proisocortical areas 24, 25, and 32 and then to the medially situated isocortical areas 9, 10, and 14. The next stage includes lateral areas 10 and 9 and the rostral part of dorsal area 46. The last group includes the caudal part of dorsal area 46 and dorsal area 8. The interconnections of subdivisions of the basoventral and mediodorsal cortices were studied with the aid of anterograde and retrograde tracers. Within each trend a given area projects in two directions: to adjoining regions belonging to succeeding architectonic stages on the one hand, and to nearby regions from the preceding architectonic stage on the other. In each direction there is more than one region involved in this projection system, paralleling the radial nature of architectonic change. Periallo- and proisocortices have widespread intrinsic connections, whereas isocortices situated at a distance from limbic areas, such as area 8, have restricted connections. Most interconnections are limited to areas within the same architectonic trend. However, there are links between cortices from the two trends, and these seem to occur between areas that are at a similar stage of architectonic differentiation.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D008251 Macaca A genus of the subfamily CERCOPITHECINAE, family CERCOPITHECIDAE, consisting of 16 species inhabiting forests of Africa, Asia, and the islands of Borneo, Philippines, and Celebes. Ape, Barbary,Ape, Black,Ape, Celebes,Barbary Ape,Black Ape,Celebes Ape,Macaque,Apes, Barbary,Apes, Black,Apes, Celebes,Barbary Apes,Black Apes,Celebes Apes,Macacas,Macaques
D008253 Macaca mulatta A species of the genus MACACA inhabiting India, China, and other parts of Asia. The species is used extensively in biomedical research and adapts very well to living with humans. Chinese Rhesus Macaques,Macaca mulatta lasiota,Monkey, Rhesus,Rhesus Monkey,Rhesus Macaque,Chinese Rhesus Macaque,Macaca mulatta lasiotas,Macaque, Rhesus,Rhesus Macaque, Chinese,Rhesus Macaques,Rhesus Macaques, Chinese,Rhesus Monkeys
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

H Barbas, and D N Pandya
January 1992, Advances in neurology,
H Barbas, and D N Pandya
January 1982, The Journal of comparative neurology,
H Barbas, and D N Pandya
August 1998, The Journal of comparative neurology,
H Barbas, and D N Pandya
March 1997, The Journal of comparative neurology,
H Barbas, and D N Pandya
January 1998, The Journal of comparative neurology,
H Barbas, and D N Pandya
October 1993, The Journal of comparative neurology,
H Barbas, and D N Pandya
December 1993, The Journal of comparative neurology,
H Barbas, and D N Pandya
February 2007, The Journal of comparative neurology,
H Barbas, and D N Pandya
October 2001, Cerebral cortex (New York, N.Y. : 1991),
Copied contents to your clipboard!