Topographic organization of connections between the hypothalamus and prefrontal cortex in the rhesus monkey. 1998

N L Rempel-Clower, and H Barbas
Department of Health Sciences, Boston University, Massachusetts 02215, USA. nrempel@bu.edu

Prefrontal cortices have been implicated in autonomic function, but their role in this activity is not well understood. Orbital and medial prefrontal cortices receive input from cortical and subcortical structures associated with emotions. Thus, the prefrontal cortex may be an essential link for autonomic responses driven by emotions. Classic studies have demonstrated the existence of projections between prefrontal cortex and the hypothalamus, a central autonomic structure, but the topographic organization of these connections in the monkey has not been clearly established. We investigated the organization of bidirectional connections between these areas in the rhesus monkey by using tracer injections in orbital, medial, and lateral prefrontal areas. All prefrontal areas investigated received projections from the hypothalamus, originating mainly in the posterior hypothalamus. Differences in the topography of hypothalamic projection neurons were related to both the location and type of the target cortical area. Injections in lateral eulaminate prefrontal areas primarily labeled neurons in the posterior hypothalamus that were equally distributed in the lateral and medial hypothalamus. In contrast, injections in orbitofrontal and medial limbic cortices labeled neurons in the anterior and tuberal regions of the hypothalamus and in the posterior region. Projection neurons targeting orbital limbic cortices were more prevalent in the lateral part of the hypothalamus, whereas those targeting medial limbic cortices were more prevalent in the medial hypothalamus. In comparison to the ascending projections, descending projections from prefrontal cortex to the hypothalamus were highly specific, originating mostly from orbital and medial prefrontal cortices. The ascending and descending connections overlapped in the hypothalamus in areas that have autonomic functions. These results suggest that specific orbitofrontal and medial prefrontal areas exert a direct influence on the hypothalamus and may be important for the autonomic responses evoked by complex emotional situations.

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D007395 Interneurons Most generally any NEURONS which are not motor or sensory. Interneurons may also refer to neurons whose AXONS remain within a particular brain region in contrast to projection neurons, which have axons projecting to other brain regions. Intercalated Neurons,Intercalated Neuron,Interneuron,Neuron, Intercalated,Neurons, Intercalated
D008253 Macaca mulatta A species of the genus MACACA inhabiting India, China, and other parts of Asia. The species is used extensively in biomedical research and adapts very well to living with humans. Chinese Rhesus Macaques,Macaca mulatta lasiota,Monkey, Rhesus,Rhesus Monkey,Rhesus Macaque,Chinese Rhesus Macaque,Macaca mulatta lasiotas,Macaque, Rhesus,Rhesus Macaque, Chinese,Rhesus Macaques,Rhesus Macaques, Chinese,Rhesus Monkeys
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017397 Prefrontal Cortex The rostral part of the frontal lobe, bounded by the inferior precentral fissure in humans, which receives projection fibers from the MEDIODORSAL NUCLEUS OF THE THALAMUS. The prefrontal cortex receives afferent fibers from numerous structures of the DIENCEPHALON; MESENCEPHALON; and LIMBIC SYSTEM as well as cortical afferents of visual, auditory, and somatic origin. Anterior Prefrontal Cortex,Brodmann Area 10,Brodmann Area 11,Brodmann Area 12,Brodmann Area 47,Brodmann's Area 10,Brodmann's Area 11,Brodmann's Area 12,Brodmann's Area 47,Pars Orbitalis,Frontal Sulcus,Gyrus Frontalis Inferior,Gyrus Frontalis Superior,Gyrus Orbitalis,Gyrus Rectus,Inferior Frontal Gyrus,Lateral Orbitofrontal Cortex,Marginal Gyrus,Medial Frontal Gyrus,Olfactory Sulci,Orbital Area,Orbital Cortex,Orbital Gyri,Orbitofrontal Cortex,Orbitofrontal Gyri,Orbitofrontal Gyrus,Orbitofrontal Region,Rectal Gyrus,Rectus Gyrus,Straight Gyrus,Subcallosal Area,Superior Frontal Convolution,Superior Frontal Gyrus,Ventral Medial Prefrontal Cortex,Ventromedial Prefrontal Cortex,Anterior Prefrontal Cortices,Area 10, Brodmann,Area 10, Brodmann's,Area 11, Brodmann,Area 11, Brodmann's,Area 12, Brodmann,Area 12, Brodmann's,Area 47, Brodmann,Area 47, Brodmann's,Area, Orbital,Area, Subcallosal,Brodmanns Area 10,Brodmanns Area 11,Brodmanns Area 12,Brodmanns Area 47,Convolution, Superior Frontal,Convolutions, Superior Frontal,Cortex, Anterior Prefrontal,Cortex, Lateral Orbitofrontal,Cortex, Orbital,Cortex, Orbitofrontal,Cortex, Prefrontal,Cortex, Ventromedial Prefrontal,Cortices, Ventromedial Prefrontal,Frontal Convolution, Superior,Frontal Gyrus, Inferior,Frontal Gyrus, Medial,Frontal Gyrus, Superior,Frontalis Superior, Gyrus,Gyrus, Inferior Frontal,Gyrus, Marginal,Gyrus, Medial Frontal,Gyrus, Orbital,Gyrus, Orbitofrontal,Gyrus, Rectal,Gyrus, Rectus,Gyrus, Straight,Gyrus, Superior Frontal,Inferior, Gyrus Frontalis,Lateral Orbitofrontal Cortices,Olfactory Sulcus,Orbital Areas,Orbital Cortices,Orbital Gyrus,Orbitalis, Pars,Orbitofrontal Cortex, Lateral,Orbitofrontal Cortices,Orbitofrontal Cortices, Lateral,Orbitofrontal Regions,Prefrontal Cortex, Anterior,Prefrontal Cortex, Ventromedial,Prefrontal Cortices, Anterior,Region, Orbitofrontal,Subcallosal Areas,Sulcus, Frontal,Superior Frontal Convolutions,Superior, Gyrus Frontalis,Ventromedial Prefrontal Cortices
D018998 Wheat Germ Agglutinin-Horseradish Peroxidase Conjugate The lectin wheatgerm agglutinin conjugated to the enzyme HORSERADISH PEROXIDASE. It is widely used for tracing neural pathways. WGA-HRP,Wheat Germ Agglutinin Horseradish Peroxidase Conjugate

Related Publications

N L Rempel-Clower, and H Barbas
March 1997, The Journal of comparative neurology,
N L Rempel-Clower, and H Barbas
April 1978, The Journal of physiology,
N L Rempel-Clower, and H Barbas
August 1989, The Journal of comparative neurology,
N L Rempel-Clower, and H Barbas
January 1992, Advances in neurology,
N L Rempel-Clower, and H Barbas
March 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience,
N L Rempel-Clower, and H Barbas
September 1997, Brain research. Brain research reviews,
N L Rempel-Clower, and H Barbas
January 1990, Progress in brain research,
N L Rempel-Clower, and H Barbas
October 1993, The Journal of comparative neurology,
N L Rempel-Clower, and H Barbas
February 1982, Brain research,
Copied contents to your clipboard!