Negative cooperativity of chicken ovotransferrin on Al(III)-binding. 1989

K Ichimura, and H Kihara, and T Yamamura, and K Satake
Department of Chemistry, Faculty of Science, University of Tokyo.

Chicken ovotransferrin, an iron binding protein, has two metal binding sites (amino (N) and carboxy (C) terminal sites). It binds Cu(II), Al(III), Co(II), and other metals, as well as Fe(III). In this study, the selectivity and cooperativity of the N and C sites on Al(III), Co(II), and Tb(III) binding were investigated. Metals were classified into two groups according to their site preference. Co(II) and Al(III) bound to the N site more preferably than to the C site, whereas Tb(III) bound to the C site more preferably. On Fe(III) binding, the binding constant of Fe(III) becomes larger when the other site is already occupied. Thus, positive cooperativity is seen. In the present study, the binding cooperativities of Co(II), Tb(III), and Al(III) as to the N and C sites were investigated. On Co(II) and Tb(III) binding, no cooperativity was observed, as in the case of Cu(II) [Yamamura, T. et al. (1985) in Proteins of Iron Storage and Transport (Spik, G., Montreuil, J., Crichton, R.R., & Mazurier, J., eds.) pp. 53-56, Elsevier Science Publ. B.V., Amsterdam]. In contrast, negative cooperativity was observed on Al(III) binding. Based on a model proposed by Yamamura et al. [Yamamura, T. et al. (1985) ibid.], the ratio of the binding constants, KC/KN, and the stacking coefficient, Kst, were estimated. KC/KN is 2.2 +/- 0.4 for the Tb(III) ion, 0.5 +/- 0.1 for the Co(II) ion, and 0.12 +/- 0.02 for the Al(III) ion. Kst (= 1 in a non-cooperative case) is 0.98 +/- 0.02 for the Tb(III) ion, 1.03 +/- 0.02 for the Co(II) ion, and 0.55 +/- 0.22 for the Al(III) ion.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002621 Chemistry A basic science concerned with the composition, structure, and properties of matter; and the reactions that occur between substances and the associated energy exchange.
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D003035 Cobalt A trace element that is a component of vitamin B12. It has the atomic symbol Co, atomic number 27, and atomic weight 58.93. It is used in nuclear weapons, alloys, and pigments. Deficiency in animals leads to anemia; its excess in humans can lead to erythrocytosis. Cobalt-59,Cobalt 59
D003207 Conalbumin A glycoprotein albumin from hen's egg white with strong iron-binding affinity. Ovotransferrin
D004527 Egg Proteins Proteins which are found in eggs (OVA) from any species. Egg Protein,Egg Shell Protein,Egg Shell Proteins,Egg White Protein,Egg White Proteins,Egg Yolk Protein,Egg Yolk Proteins,Ovum Protein,Ovum Proteins,Yolk Protein,Yolk Proteins,Protein, Egg,Protein, Egg Shell,Protein, Egg White,Protein, Egg Yolk,Protein, Ovum,Protein, Yolk,Proteins, Egg,Proteins, Egg Shell,Proteins, Egg White,Proteins, Egg Yolk,Proteins, Ovum,Proteins, Yolk,Shell Protein, Egg,Shell Proteins, Egg,White Protein, Egg,White Proteins, Egg,Yolk Protein, Egg,Yolk Proteins, Egg
D000535 Aluminum A metallic element that has the atomic number 13, atomic symbol Al, and atomic weight 26.98. Aluminium,Aluminium-27,Aluminum-27,Aluminium 27,Aluminum 27
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining

Related Publications

K Ichimura, and H Kihara, and T Yamamura, and K Satake
September 1987, Nucleic acids research,
K Ichimura, and H Kihara, and T Yamamura, and K Satake
November 1991, The Biochemical journal,
K Ichimura, and H Kihara, and T Yamamura, and K Satake
November 2002, Developmental and comparative immunology,
K Ichimura, and H Kihara, and T Yamamura, and K Satake
February 1982, The Journal of biological chemistry,
K Ichimura, and H Kihara, and T Yamamura, and K Satake
June 1978, Hoppe-Seyler's Zeitschrift fur physiologische Chemie,
K Ichimura, and H Kihara, and T Yamamura, and K Satake
March 1985, Biochimica et biophysica acta,
K Ichimura, and H Kihara, and T Yamamura, and K Satake
January 1990, FEBS letters,
K Ichimura, and H Kihara, and T Yamamura, and K Satake
February 2005, Molecular pharmacology,
K Ichimura, and H Kihara, and T Yamamura, and K Satake
December 2006, Journal of the American Chemical Society,
Copied contents to your clipboard!