A common structural motif in thiamin pyrophosphate-binding enzymes. 1989

C F Hawkins, and A Borges, and R N Perham
Department of Biochemistry, University of Cambridge, England.

The amino acid sequences of a wide range of enzymes that utilize thiamin pyrophosphate (TPP) as cofactor have been compared. A common sequence motif approximately 30 residues in length was detected, beginning with the highly conserved sequence -GDG- and concluding with the highly conserved sequence -NN-. Secondary structure predictions suggest that the motif may adopt a beta alpha beta fold. The same motif was recognised in the primary structure of a protein deduced from the DNA sequence of a hitherto unassigned open reading frame of Rhodobacter capsulata. This putative protein exhibits additional homology with some but not all of the TPP-binding enzymes.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011767 Pyruvate Decarboxylase Catalyzes the decarboxylation of an alpha keto acid to an aldehyde and carbon dioxide. Thiamine pyrophosphate is an essential cofactor. In lower organisms, which ferment glucose to ethanol and carbon dioxide, the enzyme irreversibly decarboxylates pyruvate to acetaldehyde. EC 4.1.1.1. 2-Oxo Acid Carboxy-Lyase,Pyruvic Decarboxylase,alpha-Carboxylase,alpha-Ketoacid Carboxylase,2 Oxo Acid Carboxy Lyase,Acid Carboxy-Lyase, 2-Oxo,Carboxy-Lyase, 2-Oxo Acid,Carboxylase, alpha-Ketoacid,Decarboxylase, Pyruvate,Decarboxylase, Pyruvic,alpha Carboxylase,alpha Ketoacid Carboxylase
D011768 Pyruvate Dehydrogenase Complex A multienzyme complex responsible for the formation of ACETYL COENZYME A from pyruvate. The enzyme components are PYRUVATE DEHYDROGENASE (LIPOAMIDE); dihydrolipoamide acetyltransferase; and LIPOAMIDE DEHYDROGENASE. Pyruvate dehydrogenase complex is subject to three types of control: inhibited by acetyl-CoA and NADH; influenced by the energy state of the cell; and inhibited when a specific serine residue in the pyruvate decarboxylase is phosphorylated by ATP. PYRUVATE DEHYDROGENASE (LIPOAMIDE)-PHOSPHATASE catalyzes reactivation of the complex. (From Concise Encyclopedia Biochemistry and Molecular Biology, 3rd ed) Complex, Pyruvate Dehydrogenase,Dehydrogenase Complex, Pyruvate
D002262 Carboxy-Lyases Enzymes that catalyze the addition of a carboxyl group to a compound (carboxylases) or the removal of a carboxyl group from a compound (decarboxylases). EC 4.1.1. Carboxy-Lyase,Decarboxylase,Decarboxylases,Carboxy Lyase,Carboxy Lyases
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

C F Hawkins, and A Borges, and R N Perham
October 2005, Molecular microbiology,
C F Hawkins, and A Borges, and R N Perham
May 1976, The Journal of biological chemistry,
C F Hawkins, and A Borges, and R N Perham
June 2003, The Journal of biological chemistry,
C F Hawkins, and A Borges, and R N Perham
February 2008, Biochemistry,
C F Hawkins, and A Borges, and R N Perham
June 2000, The Journal of biological chemistry,
C F Hawkins, and A Borges, and R N Perham
January 1997, Nature structural biology,
C F Hawkins, and A Borges, and R N Perham
August 2009, EcoSal Plus,
C F Hawkins, and A Borges, and R N Perham
January 1992, Journal of nutritional science and vitaminology,
C F Hawkins, and A Borges, and R N Perham
March 2006, Molecular cell,
Copied contents to your clipboard!