[Utilization of nitrate by bacteroids and cytosol of nodules formed by Rhizobium leguminosarum]. 1989

M Fernández-López, and M J Delgado, and J Olivares, and E J Bedmar
Departamento de Microbiología, Estación Experimental del Zaidín, CSIC, Granada.

Nitrite production by nodules and roots of pea plants (Pisum sativum L., cultivar Alaska) inoculated with Rhizobium leguminosarum strain 3855 has been studied. Nitrate reductase (NR) activity and nitrite reductase (NiR) activity of the bacteroidal and cytosolic fractions of the nodules were also determined, as well as the nitrite content of the nodules cytosol. Nitrite production by nodules and roots from plants treated with 5 mM KNO3 was higher than that of nodules and roots from plants not treated with nitrate, and regardless of the nitrate treatment, nitrite production increased with the incubation period. The presence of nitrate, propanol or both compounds in the incubation mixtures significantly increased the nitrite production by nodules and roots. Nitrite reductase activity was detected in fresh by isolated bacteroids of R. leguminosarum strain 3855, although the presence of nitrate reductase activity could not be detected both in bacteroids of nodules isolated from plants treated or not with 5 mM KNO3. After isolation, when bacteroids were incubated in a mixture with nitrate, nitrate reductase activity developed after incubation for 12 h. Consequently, there was an increase in nitrite reductase activity, which resulted in the disappearance of the nitrite previously accumulated in the incubation medium. Nitrate utilization by bacteroids was not detected until 5 h from the beginning of the incubation period. Since the presence of chloramphenicol or rifampicin in the incubation medium prevented the development of the nitrate reductase activity, such activity was induced in bacteroids. Nitrite content and nitrate reductase and nitrite reductase activities of the cytosol from nodules of pea plants treated or not with 5 mM KNO3 varied with the buffer used for nodules homogenization. However, no nitrite was found when nodules were homogenized with ethanol, what indicates that nitrite accumulation in the cytosol occurs during the homogenization process of the nodules.

UI MeSH Term Description Entries
D007887 Fabaceae The large family of plants characterized by pods. Some are edible and some cause LATHYRISM or FAVISM and other forms of poisoning. Other species yield useful materials like gums from ACACIA and various LECTINS like PHYTOHEMAGGLUTININS from PHASEOLUS. Many of them harbor NITROGEN FIXATION bacteria on their roots. Many but not all species of "beans" belong to this family. Afzelia,Amorpha,Andira,Baptisia,Callerya,Ceratonia,Clathrotropis,Colophospermum,Copaifera,Delonix,Euchresta,Guibourtia,Legumes,Machaerium,Pithecolobium,Stryphnodendron,Leguminosae,Pea Family,Pithecellobium,Tachigalia,Families, Pea,Family, Pea,Legume,Pea Families
D009565 Nitrate Reductases Oxidoreductases that are specific for the reduction of NITRATES. Reductases, Nitrate
D009566 Nitrates Inorganic or organic salts and esters of nitric acid. These compounds contain the NO3- radical. Nitrate
D009572 Nitrite Reductases A group of enzymes that oxidize diverse nitrogenous substances to yield nitrite. (Enzyme Nomenclature, 1992) EC 1. Nitrite Reductase,Reductase, Nitrite,Reductases, Nitrite
D009573 Nitrites Salts of nitrous acid or compounds containing the group NO2-. The inorganic nitrites of the type MNO2 (where M Nitrite
D010940 Plant Proteins Proteins found in plants (flowers, herbs, shrubs, trees, etc.). The concept does not include proteins found in vegetables for which PLANT PROTEINS, DIETARY is available. Plant Protein,Protein, Plant,Proteins, Plant
D010946 Plants, Medicinal Plants whose roots, leaves, seeds, bark, or other constituent parts possess therapeutic, tonic, purgative, curative or other pharmacologic attributes, when administered to man or animals. Herbs, Medicinal,Medicinal Herbs,Healing Plants,Medicinal Plants,Pharmaceutical Plants,Healing Plant,Herb, Medicinal,Medicinal Herb,Medicinal Plant,Pharmaceutical Plant,Plant, Healing,Plant, Medicinal,Plant, Pharmaceutical,Plants, Healing,Plants, Pharmaceutical
D002458 Cell Fractionation Techniques to partition various components of the cell into SUBCELLULAR FRACTIONS. Cell Fractionations,Fractionation, Cell,Fractionations, Cell
D003600 Cytosol Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components. Cytosols
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial

Related Publications

M Fernández-López, and M J Delgado, and J Olivares, and E J Bedmar
February 2019, Microbial genomics,
M Fernández-López, and M J Delgado, and J Olivares, and E J Bedmar
July 1975, Canadian journal of microbiology,
M Fernández-López, and M J Delgado, and J Olivares, and E J Bedmar
July 1984, European journal of biochemistry,
M Fernández-López, and M J Delgado, and J Olivares, and E J Bedmar
July 2017, Environmental microbiology,
M Fernández-López, and M J Delgado, and J Olivares, and E J Bedmar
August 1982, Journal of bacteriology,
M Fernández-López, and M J Delgado, and J Olivares, and E J Bedmar
June 1978, European journal of biochemistry,
M Fernández-López, and M J Delgado, and J Olivares, and E J Bedmar
August 1996, Journal of bacteriology,
M Fernández-López, and M J Delgado, and J Olivares, and E J Bedmar
April 1983, Plant physiology,
M Fernández-López, and M J Delgado, and J Olivares, and E J Bedmar
July 1979, FEBS letters,
Copied contents to your clipboard!