Antimetastatic effects of synthetic polypeptides containing repeated structures of the cell adhesive Arg-Gly-Asp (RGD) and Tyr-Ile-Gly-Ser-Arg (YIGSR) sequences. 1989

I Saiki, and J Murata, and J Iida, and T Sakurai, and N Nishi, and K Matsuno, and I Azuma
Institute of Immunological Science, Faculty of Science, Hokkaido University, Sapporo, Japan.

We have investigated the inhibitory effect on experimental or spontaneous lung metastases of polypeptides which contain repetitive structures of the Arg-Gly-Asp (RGD) or Tyr-Ile-Gly-Ser-Arg (YIGSR) sequence derived from adhesion molecules, and studied their biological characterisation after administration. In the spontaneous metastasis model, multiple intravenous (i.v.) administrations of poly (RGD) and poly (YIGSR) resulted in a reduction of lung tumour colonies, although the monomer peptides, RGD or YIGSR, had no effect under these conditions. The treatment with poly(RGD) substantially prolonged the survival time for mice injected i.v. with B16-BL6 cells as compared to the treatment with RGD and random poly(R, G, D). Tumour cell adhesion to the fibronectin-substrates was remarkably inhibited by adding poly(RGD) freely in solution. Poly(RGD) was found to inhibit completely the ability of platelets to enhance tumour cell adhesion to fibronectin-substrate and tumour cell-elicited platelet aggregation in vitro, but poly(R, G, D) had no such effect. We also found that poly(RGD) led to a decrease in the arrest and retention of tumour cells after its co-injection with radiolabelled tumour cells and that the radiolabelled polypeptide can be at least decomposed into small fragments during circulation. Poly(RGD) was found to be still active in inhibiting experimental lung metastasis even when the contributions of NK cells or macrophages were removed from this system after pretreatment with anti-asialo GM1 serum, 2-chloroadenosine or carrageenan. The results indicate that the poly(RGD)-mediated inhibition of tumour metastasis may be due to the interference of the adhesive interaction of tumour cells with a specific site in the target organs. Derivatives of polypeptides which contain RGD and/or YIGSR sequences derived from cell adhesion proteins may thus provide a promising approach for the control and prevention of cancer metastasis.

UI MeSH Term Description Entries
D008175 Lung Neoplasms Tumors or cancer of the LUNG. Cancer of Lung,Lung Cancer,Pulmonary Cancer,Pulmonary Neoplasms,Cancer of the Lung,Neoplasms, Lung,Neoplasms, Pulmonary,Cancer, Lung,Cancer, Pulmonary,Cancers, Lung,Cancers, Pulmonary,Lung Cancers,Lung Neoplasm,Neoplasm, Lung,Neoplasm, Pulmonary,Pulmonary Cancers,Pulmonary Neoplasm
D008546 Melanoma, Experimental Experimentally induced tumor that produces MELANIN in animals to provide a model for studying human MELANOMA. B16 Melanoma,Melanoma, B16,Melanoma, Cloudman S91,Melanoma, Harding-Passey,Experimental Melanoma,Experimental Melanomas,Harding Passey Melanoma,Melanomas, Experimental,B16 Melanomas,Cloudman S91 Melanoma,Harding-Passey Melanoma,Melanoma, Harding Passey,Melanomas, B16,S91 Melanoma, Cloudman
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D009842 Oligopeptides Peptides composed of between two and twelve amino acids. Oligopeptide
D001792 Blood Platelets Non-nucleated disk-shaped cells formed in the megakaryocyte and found in the blood of all mammals. They are mainly involved in blood coagulation. Platelets,Thrombocytes,Blood Platelet,Platelet,Platelet, Blood,Platelets, Blood,Thrombocyte
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D005260 Female Females
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

I Saiki, and J Murata, and J Iida, and T Sakurai, and N Nishi, and K Matsuno, and I Azuma
June 1990, Analytical biochemistry,
I Saiki, and J Murata, and J Iida, and T Sakurai, and N Nishi, and K Matsuno, and I Azuma
September 1994, Cancer research,
I Saiki, and J Murata, and J Iida, and T Sakurai, and N Nishi, and K Matsuno, and I Azuma
October 1993, Biological & pharmaceutical bulletin,
I Saiki, and J Murata, and J Iida, and T Sakurai, and N Nishi, and K Matsuno, and I Azuma
August 1993, Cancer research,
I Saiki, and J Murata, and J Iida, and T Sakurai, and N Nishi, and K Matsuno, and I Azuma
January 1995, Oncology research,
I Saiki, and J Murata, and J Iida, and T Sakurai, and N Nishi, and K Matsuno, and I Azuma
March 1992, Journal of biomedical materials research,
I Saiki, and J Murata, and J Iida, and T Sakurai, and N Nishi, and K Matsuno, and I Azuma
July 1992, The Journal of biological chemistry,
I Saiki, and J Murata, and J Iida, and T Sakurai, and N Nishi, and K Matsuno, and I Azuma
August 1999, British journal of cancer,
I Saiki, and J Murata, and J Iida, and T Sakurai, and N Nishi, and K Matsuno, and I Azuma
December 2008, Chemical communications (Cambridge, England),
I Saiki, and J Murata, and J Iida, and T Sakurai, and N Nishi, and K Matsuno, and I Azuma
September 1989, The Journal of biological chemistry,
Copied contents to your clipboard!