Apoptosis in human fibrosarcoma cells is induced by a multimeric synthetic Tyr-Ile-Gly-Ser-Arg (YIGSR)-containing polypeptide from laminin. 1994

W H Kim, and H W Schnaper, and M Nomizu, and Y Yamada, and H K Kleinman
Laboratory of Developmental Biology, National Institute of Dental Research, NIH, Bethesda, Maryland 20892.

The YIGSR (Tyr-Ile-Gly-Ser-Arg) peptide, derived from the laminin beta 1 chain, decreases tumor metastasis and growth in experimental animals. The mechanism responsible for this inhibition is not known. We now report that a 16-mer branched form of YIGSR, synthesized by the multimeric antigen peptide system, induced the apoptosis of HT-1080 cells in vitro at 30 micrograms/ml (approximately 3 microM). Tumor cells treated with this peptide showed the expected morphological changes associated with apoptosis, acridine orange staining of nuclei, increased numbers of 3'-OH ends of DNA in nuclei, a DNA ladder pattern on agarose gels, and increased transforming growth factor beta 1 mRNA by Northern blot. The specificity of this peptide was confirmed by inhibition of apoptosis with a neutralizing antibody to the peptide. In addition, the branched 16-mer peptides of scrambled sequence did not induce apoptosis. Our in vitro results suggest that apoptosis may play a role in the antimetastatic and antitumor effects associated with the YIGSR peptide.

UI MeSH Term Description Entries
D007797 Laminin Large, noncollagenous glycoprotein with antigenic properties. It is localized in the basement membrane lamina lucida and functions to bind epithelial cells to the basement membrane. Evidence suggests that the protein plays a role in tumor invasion. Merosin,Glycoprotein GP-2,Laminin M,Laminin M Chain,Chain, Laminin M,Glycoprotein GP 2,M Chain, Laminin
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009842 Oligopeptides Peptides composed of between two and twelve amino acids. Oligopeptide
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D005354 Fibrosarcoma A sarcoma derived from deep fibrous tissue, characterized by bundles of immature proliferating fibroblasts with variable collagen formation, which tends to invade locally and metastasize by the bloodstream. (Stedman, 25th ed) Fibrosarcomas
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured

Related Publications

W H Kim, and H W Schnaper, and M Nomizu, and Y Yamada, and H K Kleinman
August 1993, Cancer research,
W H Kim, and H W Schnaper, and M Nomizu, and Y Yamada, and H K Kleinman
November 1989, British journal of cancer,
W H Kim, and H W Schnaper, and M Nomizu, and Y Yamada, and H K Kleinman
August 1999, British journal of cancer,
W H Kim, and H W Schnaper, and M Nomizu, and Y Yamada, and H K Kleinman
April 1989, International journal of biological macromolecules,
W H Kim, and H W Schnaper, and M Nomizu, and Y Yamada, and H K Kleinman
June 1990, Analytical biochemistry,
W H Kim, and H W Schnaper, and M Nomizu, and Y Yamada, and H K Kleinman
December 2010, Biomedical materials (Bristol, England),
W H Kim, and H W Schnaper, and M Nomizu, and Y Yamada, and H K Kleinman
February 1989, British journal of cancer,
W H Kim, and H W Schnaper, and M Nomizu, and Y Yamada, and H K Kleinman
March 1999, Chemical & pharmaceutical bulletin,
Copied contents to your clipboard!