O-acetylation and de-O-acetylation of sialic acids. 7- and 9-o-acetylation of alpha 2,6-linked sialic acids on endogenous N-linked glycans in rat liver Golgi vesicles. 1989

S Diaz, and H H Higa, and B K Hayes, and A Varki
Department of Medicine, San Diego Veterans Administration Medical Center, California.

We have previously shown that radioactivity from [acetyl-3H]AcCoA is concentrated into isolated intact rat liver Golgi vesicles. The incorporated radioactivity occurred in acid-soluble and acid-insoluble components, and the acid-insoluble fraction included O-acetylated sialic acids (Varki, A., and Diaz, S. (1985) J. Biol. Chem. 260, 6600-6608). Nearly all of the protein-associated radioactivity was found to be in sialic acids alpha 2-6-linked to N-linked oligosaccharides on endogenous glycoproteins. Incubation of the vesicles with CMP-[3H]sialic acid resulted in labeling of a very similar group of glycoproteins. The 3H-O-acetyl groups were found at both the 7- and the 9-positions of N-acetylneuraminic acid residues at the end of the labeling reaction. Although 7-O-acetyl groups can undergo migration to the 9-position under physiological conditions, kinetic studies using O-acetyl-14C-labeled internal and O-acetyl-3H-labeled external standards indicate that during the labeling, release, and purification, negligible migration occurred. Studies with mild periodate oxidation provided further confirmation that O-acetyl esters are added directly to both the 7- and the 9-positions of the sialic acids in this system. The acid-soluble, low molecular weight component is released from the vesicles by increasing concentrations of saponin, and its exit parallels that of CMP-[14C]sialic acid taken up during the incubation. The vesicles themselves are impermeant to free acetate. However, even after short incubations, this saponin-releasable radioactivity was almost exclusively in [3H] acetate and not in [3H]acetyl-CoA. The apparent Km for accumulation of the [3H]acetate is almost identical with that for the generation of the acid-insoluble O-acetylated sialic acids. Most of this accumulation of free acetate is also blocked by coenzyme A-SH. Only a small portion arises from the action of an endogenous esterase on the 3H-O-acetylated sialic acids. Taken together, the results indicate that accumulation of free [3H]acetate occurs within the lumen of the vesicles in parallel with O-acetylation of sialic acids and is probably a product of abortive acetylation. It is not known if this reaction occurs in vivo. Permeabilization of Golgi vesicles to low molecular weight molecules with saponin does not alter the rate of acetylation substantially. Furthermore, double label studies suggest that the intact acetyl-CoA molecule does not gain access to the lumen of the vesicles. These results indicate that the acetylation reaction may have a different mechanism from previously described Golgi glycosylation reactions, wherein specific transporters concentrate sugar nucleotides for use by luminally oriented transferases.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009844 Oligosaccharides Carbohydrates consisting of between two (DISACCHARIDES) and ten MONOSACCHARIDES connected by either an alpha- or beta-glycosidic link. They are found throughout nature in both the free and bound form. Oligosaccharide
D011134 Polysaccharides Long chain polymeric CARBOHYDRATES composed of MONOSACCHARIDES linked by glycosidic bonds. Glycan,Glycans,Polysaccharide
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D003065 Coenzyme A CoA,CoASH
D003569 Cytidine Monophosphate N-Acetylneuraminic Acid A nucleoside monophosphate sugar which donates N-acetylneuraminic acid to the terminal sugar of a ganglioside or glycoprotein. CMP Acetylneuraminic Acid,CMP-N-Acetylneuraminic Acid,CMP-NANA,D-glycero-beta-D-galacto-2-Nonulopyranosonic acid, 5-(acetylamino)-3,5-dideoxy-, 2-(hydrogen 5'-cytidylate),CMP-Sialic Acid,Cytidine Monophosphate N Acetylneuraminic Acid,Acetylneuraminic Acid, CMP,CMP N Acetylneuraminic Acid,CMP Sialic Acid
D003847 Deoxyglucose 2-Deoxy-D-arabino-hexose. An antimetabolite of glucose with antiviral activity. 2-Deoxy-D-glucose,2-Deoxyglucose,2-Desoxy-D-glucose,2 Deoxy D glucose,2 Deoxyglucose,2 Desoxy D glucose
D006020 Glycopeptides Proteins which contain carbohydrate groups attached covalently to the polypeptide chain. The protein moiety is the predominant group with the carbohydrate making up only a small percentage of the total weight. Glycopeptide

Related Publications

S Diaz, and H H Higa, and B K Hayes, and A Varki
January 2004, European journal of biochemistry,
S Diaz, and H H Higa, and B K Hayes, and A Varki
January 2008, Cancer research,
S Diaz, and H H Higa, and B K Hayes, and A Varki
November 2017, The FEBS journal,
S Diaz, and H H Higa, and B K Hayes, and A Varki
January 1998, Biochimie,
S Diaz, and H H Higa, and B K Hayes, and A Varki
June 1985, The Journal of biological chemistry,
Copied contents to your clipboard!