Lack of correlation between deoxyribonucleotide pool sizes, spontaneous mutation rates and malignant potential in Chinese hamster ovary cells. 1989

A Y Tagger, and J E Damen, and A H Greenberg, and J A Wright
Department of Biochemistry, University of Manitoba, Winnipeg, Canada.

To examine the relationship between altered spontaneous mutation rates and malignant characteristics of cells, two hydroxyurea-resistant Chinese hamster ovary cell lines, with alterations in ribonucleotide reductase, were examined for their rates of spontaneous mutation to 6-thioguanine and ouabain resistance, tumor growth rates and their ability to form experimental lung metastases. The most resistant cell line, HR-R2T, showed no changes in the rate of spontaneous mutation to 6-thioguanine or ouabain resistance compared to the parental wild-type cell line; however, the mutant line formed lung metastases in experimental metastasis assays with BALB/c nu/nu mice, and exhibited metastatic abilities significantly different from the wild-type population. Furthermore, the HR-R2T population did not show imbalances in any of the deoxyribonucleoside triphosphate pool sizes, which are frequently observed in cells altered in ribonucleotide reductase activity. The second hydroxyurea-resistant line, HNR-AT, had gross alterations in dCTP and dGTP pools and although the rate of spontaneous mutation to 6-thioguanione resistance was unaltered, it showed a moderate decrease in the rate of spontaneous mutation to ouabain resistance when compared to the parental wild-type population. Interestingly, the HNR-AT cell line did not form any lung metastases in the experimental metastasis assay. Both mutant cell lines, HR-R2T, and HNR-AT, had increased tumor growth rates in C57 BALB/c "beige" nude (nu/nu) mice as compared to the parental wild-type population. In total, the results obtained with the two mutant cell lines question the association of altered mutation rates with increased metastatic potential. Although several explanations are possible for the altered malignant properties exhibited by HR-R2T and HNR-AT cells, it is interesting to note that the results are consistent with earlier suggestions that changes in ribonucleotide reductase may accompany modifications in the malignant characteristics of cells.

UI MeSH Term Description Entries
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009362 Neoplasm Metastasis The transfer of a neoplasm from one organ or part of the body to another remote from the primary site. Metastase,Metastasis,Metastases, Neoplasm,Metastasis, Neoplasm,Neoplasm Metastases,Metastases
D009368 Neoplasm Transplantation Experimental transplantation of neoplasms in laboratory animals for research purposes. Transplantation, Neoplasm,Neoplasm Transplantations,Transplantations, Neoplasm
D009374 Neoplasms, Experimental Experimentally induced new abnormal growth of TISSUES in animals to provide models for studying human neoplasms. Experimental Neoplasms,Experimental Neoplasm,Neoplasm, Experimental
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003854 Deoxyribonucleotides A purine or pyrimidine base bonded to a DEOXYRIBOSE containing a bond to a phosphate group. Deoxyribonucleotide
D005260 Female Females
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

A Y Tagger, and J E Damen, and A H Greenberg, and J A Wright
January 1986, Progress in clinical and biological research,
A Y Tagger, and J E Damen, and A H Greenberg, and J A Wright
October 1982, Biochimica et biophysica acta,
A Y Tagger, and J E Damen, and A H Greenberg, and J A Wright
March 1982, Biochemical pharmacology,
A Y Tagger, and J E Damen, and A H Greenberg, and J A Wright
April 1984, Cancer letters,
A Y Tagger, and J E Damen, and A H Greenberg, and J A Wright
January 1983, Mutation research,
A Y Tagger, and J E Damen, and A H Greenberg, and J A Wright
January 1988, Recent results in cancer research. Fortschritte der Krebsforschung. Progres dans les recherches sur le cancer,
A Y Tagger, and J E Damen, and A H Greenberg, and J A Wright
January 1987, Methods in enzymology,
A Y Tagger, and J E Damen, and A H Greenberg, and J A Wright
January 1995, Cytogenetics and cell genetics,
A Y Tagger, and J E Damen, and A H Greenberg, and J A Wright
November 1979, Somatic cell genetics,
Copied contents to your clipboard!