Desmosomes and Intermediate Filaments: Their Consequences for Tissue Mechanics. 2017

Mechthild Hatzfeld, and René Keil, and Thomas M Magin
Institute of Molecular Medicine, Division of Pathobiochemistry, Martin-Luther-University Halle-Wittenberg, 06114 Halle, Germany.

Adherens junctions (AJs) and desmosomes connect the actin and keratin filament networks of adjacent cells into a mechanical unit. Whereas AJs function in mechanosensing and in transducing mechanical forces between the plasma membrane and the actomyosin cytoskeleton, desmosomes and intermediate filaments (IFs) provide mechanical stability required to maintain tissue architecture and integrity when the tissues are exposed to mechanical stress. Desmosomes are essential for stable intercellular cohesion, whereas keratins determine cell mechanics but are not involved in generating tension. Here, we summarize the current knowledge of the role of IFs and desmosomes in tissue mechanics and discuss whether the desmosome-keratin scaffold might be actively involved in mechanosensing and in the conversion of chemical signals into mechanical strength.

UI MeSH Term Description Entries
D007382 Intermediate Filaments Cytoplasmic filaments intermediate in diameter (about 10 nanometers) between the microfilaments and the microtubules. They may be composed of any of a number of different proteins and form a ring around the cell nucleus. Tonofilaments,Neurofilaments,Filament, Intermediate,Filaments, Intermediate,Intermediate Filament,Neurofilament,Tonofilament
D007633 Keratins A class of fibrous proteins or scleroproteins that represents the principal constituent of EPIDERMIS; HAIR; NAILS; horny tissues, and the organic matrix of tooth ENAMEL. Two major conformational groups have been characterized, alpha-keratin, whose peptide backbone forms a coiled-coil alpha helical structure consisting of TYPE I KERATIN and a TYPE II KERATIN, and beta-keratin, whose backbone forms a zigzag or pleated sheet structure. alpha-Keratins have been classified into at least 20 subtypes. In addition multiple isoforms of subtypes have been found which may be due to GENE DUPLICATION. Cytokeratin,Keratin Associated Protein,Keratin,Keratin-Associated Proteins,alpha-Keratin,Associated Protein, Keratin,Keratin Associated Proteins,Protein, Keratin Associated,alpha Keratin
D008841 Actin Cytoskeleton Fibers composed of MICROFILAMENT PROTEINS, which are predominately ACTIN. They are the smallest of the cytoskeletal filaments. Actin Filaments,Microfilaments,Actin Microfilaments,Actin Cytoskeletons,Actin Filament,Actin Microfilament,Cytoskeleton, Actin,Cytoskeletons, Actin,Filament, Actin,Filaments, Actin,Microfilament,Microfilament, Actin,Microfilaments, Actin
D008870 Microtubules Slender, cylindrical filaments found in the cytoskeleton of plant and animal cells. They are composed of the protein TUBULIN and are influenced by TUBULIN MODULATORS. Microtubule
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D003598 Cytoskeletal Proteins Major constituent of the cytoskeleton found in the cytoplasm of eukaryotic cells. They form a flexible framework for the cell, provide attachment points for organelles and formed bodies, and make communication between parts of the cell possible. Proteins, Cytoskeletal
D003599 Cytoskeleton The network of filaments, tubules, and interconnecting filamentous bridges which give shape, structure, and organization to the cytoplasm. Cytoplasmic Filaments,Cytoskeletal Filaments,Microtrabecular Lattice,Cytoplasmic Filament,Cytoskeletal Filament,Cytoskeletons,Filament, Cytoplasmic,Filament, Cytoskeletal,Filaments, Cytoplasmic,Filaments, Cytoskeletal,Lattice, Microtrabecular,Lattices, Microtrabecular,Microtrabecular Lattices
D003896 Desmosomes A type of junction that attaches one cell to its neighbor. One of a number of differentiated regions which occur, for example, where the cytoplasmic membranes of adjacent epithelial cells are closely apposed. It consists of a circular region of each membrane together with associated intracellular microfilaments and an intercellular material which may include, for example, mucopolysaccharides. (From Glick, Glossary of Biochemistry and Molecular Biology, 1990; Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Desmosome
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial

Related Publications

Mechthild Hatzfeld, and René Keil, and Thomas M Magin
December 2000, Nature reviews. Molecular cell biology,
Mechthild Hatzfeld, and René Keil, and Thomas M Magin
June 1998, The Journal of cell biology,
Mechthild Hatzfeld, and René Keil, and Thomas M Magin
February 2018, Cell biology international,
Mechthild Hatzfeld, and René Keil, and Thomas M Magin
July 2021, Cells,
Mechthild Hatzfeld, and René Keil, and Thomas M Magin
January 1999, International review of cytology,
Mechthild Hatzfeld, and René Keil, and Thomas M Magin
January 2002, Journal of muscle research and cell motility,
Mechthild Hatzfeld, and René Keil, and Thomas M Magin
November 2004, Experimental cell research,
Mechthild Hatzfeld, and René Keil, and Thomas M Magin
January 2022, Methods in molecular biology (Clifton, N.J.),
Mechthild Hatzfeld, and René Keil, and Thomas M Magin
January 1985, Cell and muscle motility,
Mechthild Hatzfeld, and René Keil, and Thomas M Magin
August 2002, Nature structural biology,
Copied contents to your clipboard!