Nebulized anionic guanidinylated O-carboxymethyl chitosan/N-2-hydroxypropyltimehyl ammonium chloride chitosan nanoparticles for siRNA pulmonary delivery: preparation, characterization and in vitro evaluation. 2017

Suhui Ni, and Yuwen Xie, and Yue Tang, and Yun Liu, and Jing Chen, and Siyan Zhu
a Department of Pharmacy , China Pharmaceutical University , Nanjing , PR China.

This study developed a pH-sensitive anionic system composed of guanidinylated O-carboxymethyl chitosan (GOCMCS) and N-2-hydroxypropyltimehyl ammonium chloride chitosan (N-2-HACC) for efficient siRNA delivery to the lungs following nebulization. About 16.8% of guanidine groups were incorporated into O-carboxymethyl chitosan (OCMCS) with the aid of O-methylisourea. Gel electrophoresis images demonstrated that siRNA was successfully encapsulated in nanoparticles ranging from 150 to 180 nm with zeta potential of about -17 mV. The nanoparticles containing GOCMCS existed superior transfection performance compared with their amino-based analogs. The evaluation in vitro revealed that nanoparticles were internalized into A549 cells by energy-dependent endocytosis, then achieved endosomal escape by direct transmembrane penetration of guanidine moieties as well as swelling behavior of nanoparticles due to the pH sensitivity of GOCMCS. The mRNA level of survivin gene was down-regulated to 6.9% using GOCMCS/N-2-HACC/siSurvivin NPs. The survivin siRNA mediated by nanoparticles caused 30% of cell growth inhibition and induced 19.45% of cell apoptosis, which was comparable to Lipofectamin2000. After nebulization of siRNA-loaded nanoparticles, the stability of siRNA was maintained and fine particle fractions were detected by two-stage impinger that accounted for more than 60%. These results suggested that GOCMCS/N-2-HACC nanoparticles possessed potential as safe and efficient carrier for siRNA pulmonary delivery.

UI MeSH Term Description Entries
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D009330 Nebulizers and Vaporizers Devices that cause a liquid or solid to be converted into an aerosol (spray) or a vapor. It is used in drug administration by inhalation, humidification of ambient air, and in certain analytical instruments. Atomizers,Inhalation Devices,Inhalators,Inhalers,Vaporizers,Nebulizers,Vaporizers and Nebulizers,Atomizer,Device, Inhalation,Devices, Inhalation,Inhalation Device,Inhalator,Inhaler,Nebulizer,Vaporizer
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000072283 A549 Cells An immortalized cell line derived from human ADENOCARCINOMA, ALVEOLAR basal epithelial cells isolated from the lungs of a male patient in 1972. The cell line is positive for KERATIN, can synthesize LECITHIN, and contains high levels of POLYUNSATURATED FATTY ACIDS in its PLASMA MEMBRANE. It is used as a model for PULMONARY ALVEOLI function and virus infections, as a TRANSFECTION host, and for PRECLINICAL DRUG EVALUATION. A549 Cell Line,A549 Cell,A549 Cell Lines,Cell Line, A549,Cell Lines, A549,Cell, A549,Cells, A549
D000644 Quaternary Ammonium Compounds Derivatives of ammonium compounds, NH4+ Y-, in which all four of the hydrogens bonded to nitrogen have been replaced with hydrocarbyl groups. These are distinguished from IMINES which are RN Quaternary Ammonium Compound,Ammonium Compound, Quaternary,Ammonium Compounds, Quaternary,Compound, Quaternary Ammonium
D000838 Anions Negatively charged atoms, radicals or groups of atoms which travel to the anode or positive pole during electrolysis. Anion
D048271 Chitosan Deacetylated CHITIN, a linear polysaccharide of deacetylated beta-1,4-D-glucosamine. It is used in HYDROGEL and to treat WOUNDS. Poliglusam
D019791 Guanidine A strong organic base existing primarily as guanidium ions at physiological pH. It is found in the urine as a normal product of protein metabolism. It is also used in laboratory research as a protein denaturant. (From Martindale, the Extra Pharmacopoeia, 30th ed and Merck Index, 12th ed) It is also used in the treatment of myasthenia and as a fluorescent probe in HPLC. Guanidine Hydrochloride,Guanidinium,Guanidinium Chloride,Guanidine Monohydrate,Guanidine Monohydrobromide,Guanidine Monohydrochloride,Guanidine Monohydroiodine,Guanidine Nitrate,Guanidine Phosphate,Guanidine Sulfate,Guanidine Sulfate (1:1),Guanidine Sulfate (2:1),Guanidine Sulfite (1:1),Guanidium Chloride,Chloride, Guanidinium,Chloride, Guanidium,Hydrochloride, Guanidine,Monohydrate, Guanidine,Monohydrobromide, Guanidine,Monohydrochloride, Guanidine,Monohydroiodine, Guanidine,Nitrate, Guanidine,Phosphate, Guanidine,Sulfate, Guanidine
D034741 RNA, Small Interfering Small double-stranded, non-protein coding RNAs (21-31 nucleotides) involved in GENE SILENCING functions, especially RNA INTERFERENCE (RNAi). Endogenously, siRNAs are generated from dsRNAs (RNA, DOUBLE-STRANDED) by the same ribonuclease, Dicer, that generates miRNAs (MICRORNAS). The perfect match of the siRNAs' antisense strand to their target RNAs mediates RNAi by siRNA-guided RNA cleavage. siRNAs fall into different classes including trans-acting siRNA (tasiRNA), repeat-associated RNA (rasiRNA), small-scan RNA (scnRNA), and Piwi protein-interacting RNA (piRNA) and have different specific gene silencing functions. RNA, Scan,Repeat-Associated siRNA,Scan RNA,Small Scan RNA,Trans-Acting siRNA,siRNA,siRNA, Repeat-Associated,siRNA, Trans-Acting,Short Hairpin RNA,Short Interfering RNA,Small Hairpin RNA,Small Interfering RNA,scnRNA,shRNA,tasiRNA,Hairpin RNA, Short,Hairpin RNA, Small,Interfering RNA, Short,Interfering RNA, Small,RNA, Short Hairpin,RNA, Short Interfering,RNA, Small Hairpin,RNA, Small Scan,Repeat Associated siRNA,Scan RNA, Small,Trans Acting siRNA,siRNA, Repeat Associated,siRNA, Trans Acting

Related Publications

Suhui Ni, and Yuwen Xie, and Yue Tang, and Yun Liu, and Jing Chen, and Siyan Zhu
November 2022, International journal of biological macromolecules,
Suhui Ni, and Yuwen Xie, and Yue Tang, and Yun Liu, and Jing Chen, and Siyan Zhu
November 2022, International journal of biological macromolecules,
Suhui Ni, and Yuwen Xie, and Yue Tang, and Yun Liu, and Jing Chen, and Siyan Zhu
September 2015, International journal of biological macromolecules,
Suhui Ni, and Yuwen Xie, and Yue Tang, and Yun Liu, and Jing Chen, and Siyan Zhu
October 2009, Journal of controlled release : official journal of the Controlled Release Society,
Suhui Ni, and Yuwen Xie, and Yue Tang, and Yun Liu, and Jing Chen, and Siyan Zhu
October 2017, Carbohydrate polymers,
Suhui Ni, and Yuwen Xie, and Yue Tang, and Yun Liu, and Jing Chen, and Siyan Zhu
January 2012, Journal of biomaterials science. Polymer edition,
Suhui Ni, and Yuwen Xie, and Yue Tang, and Yun Liu, and Jing Chen, and Siyan Zhu
September 2014, Biomaterials,
Suhui Ni, and Yuwen Xie, and Yue Tang, and Yun Liu, and Jing Chen, and Siyan Zhu
January 2013, Carbohydrate polymers,
Suhui Ni, and Yuwen Xie, and Yue Tang, and Yun Liu, and Jing Chen, and Siyan Zhu
October 2015, Carbohydrate polymers,
Suhui Ni, and Yuwen Xie, and Yue Tang, and Yun Liu, and Jing Chen, and Siyan Zhu
January 2016, Pharmaceutical development and technology,
Copied contents to your clipboard!