Purification and characterization of a new DNA-dependent ATPase with helicase activity from Escherichia coli. 1987

E R Wood, and S W Matson
Department of Biology, University of North Carolina at Chapel Hill 27514.

A previously unreported single-stranded DNA-dependent nucleoside 5'-triphosphatase with DNA unwinding activity has been purified from extracts of Escherichia coli lacking the F factor. Fractions of the purified enzyme contain a major polypeptide of Mr = 75,000 which contains the active site(s) for both ATP hydrolysis and helicase activity. This is consistent with the results of gel filtration chromatography which indicate a native molecular mass of 75 kDa. The 75-kDa helicase has a preference for ATP (dATP) as a substrate in the hydrolysis reaction and requires the presence of a single-stranded DNA cofactor. The helicase reaction catalyzed by the enzyme has been characterized using an in vitro strand displacement assay. The 75-kDa helicase displaces a 71-nucleotide DNA fragment in an enzyme concentration-dependent and time-dependent reaction. The helicase reaction depends on the presence of a hydrolyzable nucleoside 5'-triphosphate (NTP) suggesting that NTP hydrolysis is required for the unwinding activity. In addition, the enzyme can displace a 343-nucleotide DNA fragment albeit less efficiently. The direction of the unwinding reaction is 3' to 5' with respect to the strand of DNA on which the enzyme is bound. The molecular size of this helicase and the direction of the unwinding reaction are similar to both helicase II and Rep protein. However, the 75-kDa helicase has been shown to be distinct from both helicase II and Rep protein using immunological, physical, and genetic criteria. The discovery of a new helicase brings the total number of helicases found in E. coli cell extracts (lacking F factor) to five.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D002845 Chromatography Techniques used to separate mixtures of substances based on differences in the relative affinities of the substances for mobile and stationary phases. A mobile phase (fluid or gas) passes through a column containing a stationary phase of porous solid or liquid coated on a solid support. Usage is both analytical for small amounts and preparative for bulk amounts. Chromatographies
D002846 Chromatography, Affinity A chromatographic technique that utilizes the ability of biological molecules, often ANTIBODIES, to bind to certain ligands specifically and reversibly. It is used in protein biochemistry. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Bioaffinity,Immunochromatography,Affinity Chromatography,Bioaffinity Chromatography
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography
D002852 Chromatography, Ion Exchange Separation technique in which the stationary phase consists of ion exchange resins. The resins contain loosely held small ions that easily exchange places with other small ions of like charge present in solutions washed over the resins. Chromatography, Ion-Exchange,Ion-Exchange Chromatography,Chromatographies, Ion Exchange,Chromatographies, Ion-Exchange,Ion Exchange Chromatographies,Ion Exchange Chromatography,Ion-Exchange Chromatographies
D004265 DNA Helicases Proteins that catalyze the unwinding of duplex DNA during replication by binding cooperatively to single-stranded regions of DNA or to short regions of duplex DNA that are undergoing transient opening. In addition, DNA helicases are DNA-dependent ATPases that harness the free energy of ATP hydrolysis to translocate DNA strands. ATP-Dependent DNA Helicase,DNA Helicase,DNA Unwinding Protein,DNA Unwinding Proteins,ATP-Dependent DNA Helicases,DNA Helicase A,DNA Helicase E,DNA Helicase II,DNA Helicase III,ATP Dependent DNA Helicase,ATP Dependent DNA Helicases,DNA Helicase, ATP-Dependent,DNA Helicases, ATP-Dependent,Helicase, ATP-Dependent DNA,Helicase, DNA,Helicases, ATP-Dependent DNA,Helicases, DNA,Protein, DNA Unwinding,Unwinding Protein, DNA,Unwinding Proteins, DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006882 Hydroxyapatites A group of compounds with the general formula M10(PO4)6(OH)2, where M is barium, strontium, or calcium. The compounds are the principal mineral in phosphorite deposits, biological tissue, human bones, and teeth. They are also used as an anticaking agent and polymer catalysts. (Grant & Hackh's Chemical Dictionary, 5th ed) Hydroxyapatite Derivatives,Derivatives, Hydroxyapatite
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine

Related Publications

E R Wood, and S W Matson
April 1984, The Journal of biological chemistry,
E R Wood, and S W Matson
February 1976, The Journal of biological chemistry,
E R Wood, and S W Matson
October 1978, The Journal of biological chemistry,
E R Wood, and S W Matson
December 1989, The Journal of biological chemistry,
E R Wood, and S W Matson
January 2001, The Journal of biological chemistry,
E R Wood, and S W Matson
September 1977, European journal of biochemistry,
E R Wood, and S W Matson
January 1986, Acta microbiologica Polonica,
Copied contents to your clipboard!