ATPase activity of Escherichia coli Rep helicase is dramatically dependent on DNA ligation and protein oligomeric states. 1996

I Wong, and K J Moore, and K P Bjornson, and J Hsieh, and T M Lohman
Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA.

The Escherichia coli Rep helicase catalyzes the unwinding of duplex DNA using the energy derived from ATP binding and hydrolysis. Rep functions as a dimer but assembles to its active dimeric form only on binding DNA. Each promoter of a dimer contains a DNA binding site that can bind either single-stranded (S) or duplex (D) DNA. The dimer can bind up to two oligodeoxynucleotides in five DNA-ligation states: two half-ligated states, P2S and P2D, and three fully-ligated states, P2S2, P2D2, and P2SD. We have previously shown that the relative stabilities of these ligation states are allosterically regulated by the binding and hydrolysis of ATP and have proposed an "active rolling" model for DNA unwinding where the enzyme cycles through a series of these ligation states in a process that is coupled to the catalytic cycle of ATP hydrolysis [Wong, I., & Lohman, T.M., (1992), Science 256, 350-355]. THe basal ATPase activity of Rep protein is stimulated by ss DNA binding and by protein dimerization. We have measured the steady-state ATPase activities of Rep bound to dT(pT)15 in each distinct ss DNA ligation state (PS, P2S, and P2S2) to compare with our previous measurements with unligated Rep monomer (P) [Moore, K.J.M., & Lohman, T.M. (1994) Biochemistry 33, 14550]. We find the ATPase activity of Rep is influenced dramatically by both dimerization and ss DNA ligation state, with the following kcat values for ATP hydrolysis increasing by over 4 orders of magnitude: 2.1 x 10(-3) s(-1) for P, 2.17 +/- 0.04 s(-1) for PS, 16.5 +/- 0.2 s(-1) for P2S, and 71 +/- 2.5 s(-1) for P2S2 (20 mM Tris-HCl, pH 7.5, 6mM NaCl, 5 mM MgCl2, 10% glycerol, 4 degrees C). The apparent KM's for ATP hydrolysis are 2.05 +/- 0.1 microM for PS and 2.7 +/- 0.2 microM for P2S. These widely different ATPase activities reflect the allosteric effects of DNA ligation and demonstrate that cooperative communication occurs between the ATP and DNA site of both subunits of the Rep dimer. These results further emphasize the need to explicitly consider the population distribution of oligomerization and DNA ligation states of the helicase when attempting to infer information about elementary processes such as helicase translocation based solely on macroscopic steady-state ATPase measurements.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D004265 DNA Helicases Proteins that catalyze the unwinding of duplex DNA during replication by binding cooperatively to single-stranded regions of DNA or to short regions of duplex DNA that are undergoing transient opening. In addition, DNA helicases are DNA-dependent ATPases that harness the free energy of ATP hydrolysis to translocate DNA strands. ATP-Dependent DNA Helicase,DNA Helicase,DNA Unwinding Protein,DNA Unwinding Proteins,ATP-Dependent DNA Helicases,DNA Helicase A,DNA Helicase E,DNA Helicase II,DNA Helicase III,ATP Dependent DNA Helicase,ATP Dependent DNA Helicases,DNA Helicase, ATP-Dependent,DNA Helicases, ATP-Dependent,Helicase, ATP-Dependent DNA,Helicase, DNA,Helicases, ATP-Dependent DNA,Helicases, DNA,Protein, DNA Unwinding,Unwinding Protein, DNA,Unwinding Proteins, DNA
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004277 DNA, Single-Stranded A single chain of deoxyribonucleotides that occurs in some bacteria and viruses. It usually exists as a covalently closed circle. Single-Stranded DNA,DNA, Single Stranded,Single Stranded DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine

Related Publications

I Wong, and K J Moore, and K P Bjornson, and J Hsieh, and T M Lohman
September 1996, Proceedings of the National Academy of Sciences of the United States of America,
I Wong, and K J Moore, and K P Bjornson, and J Hsieh, and T M Lohman
December 2002, Proceedings of the National Academy of Sciences of the United States of America,
I Wong, and K J Moore, and K P Bjornson, and J Hsieh, and T M Lohman
June 1979, Canadian journal of biochemistry,
I Wong, and K J Moore, and K P Bjornson, and J Hsieh, and T M Lohman
October 1991, Journal of molecular biology,
I Wong, and K J Moore, and K P Bjornson, and J Hsieh, and T M Lohman
November 1987, The Journal of biological chemistry,
I Wong, and K J Moore, and K P Bjornson, and J Hsieh, and T M Lohman
March 2003, Genes to cells : devoted to molecular & cellular mechanisms,
I Wong, and K J Moore, and K P Bjornson, and J Hsieh, and T M Lohman
April 1992, Science (New York, N.Y.),
I Wong, and K J Moore, and K P Bjornson, and J Hsieh, and T M Lohman
July 1990, Proceedings of the National Academy of Sciences of the United States of America,
I Wong, and K J Moore, and K P Bjornson, and J Hsieh, and T M Lohman
July 1993, Biochemistry,
I Wong, and K J Moore, and K P Bjornson, and J Hsieh, and T M Lohman
November 2005, Genes to cells : devoted to molecular & cellular mechanisms,
Copied contents to your clipboard!