Voltage-clamp analysis of a crayfish rectifying synapse. 1987

C Giaume, and R T Kado, and H Korn
I.N.S.E.R.M. U261, Département des Biotechnologies, Institut Pasteur, Paris, France.

1. The rectifying crayfish giant motor synapse has been studied in the second abdominal ganglion, using the double-voltage-clamp technique which allowed direct measurements of junctional current at various fixed transjunctional potentials. 2. The transjunctional potential (Vj), defined as the difference between the voltages recorded in the lateral giant axon and the giant motor fibre, was varied from -70 to +50 mV, the minimum and maximum junctional chord conductances (gmin and gmax, respectively) were found to be 1.2 +/- 1.3 microS (n = 10) and 22.9 +/- 6.3 microS (n = 10), respectively. 3. For a given Vj, changes in the lateral giant axon or giant motor fibre membrane potential over a range of +/- 30 mV around their resting levels did not influence the junctional permeability (gj), indicating that the inside-outside potential of the junctional channel does not control gj. 4. Therefore, the steady-state junctional chord conductances were dependent only upon Vj. 5. The voltage dependence of the chord conductance was well fitted by a modified Boltzmann relation given by the equation (Formula: see text) with the constants: A = 0.15 +/- 0.03 mV-1 (n = 10) and V0 = 28 +/- 4 mV (n = 10); the latter two parameters were also found to be independent of both transmembrane potentials. 6. The junctional currents were already constant 1 ms after step changes in the junctional voltage; this was three orders of magnitude faster than the other known examples of voltage-controlled gap junctions between embryonic cells. 7. Our results may be interpreted by a highly voltage-dependent probability of opening of the junctional channels. They also suggest that the gap-junction channels forming the giant motor synapse respond very rapidly to potential and that the hemi-channels which constitute them may not be symmetric.

UI MeSH Term Description Entries
D009412 Nerve Fibers Slender processes of NEURONS, including the AXONS and their glial envelopes (MYELIN SHEATH). Nerve fibers conduct nerve impulses to and from the CENTRAL NERVOUS SYSTEM. Cerebellar Mossy Fibers,Mossy Fibers, Cerebellar,Cerebellar Mossy Fiber,Mossy Fiber, Cerebellar,Nerve Fiber
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D003400 Astacoidea A superfamily of various freshwater CRUSTACEA, in the infraorder Astacidea, comprising the crayfish. Common genera include Astacus and Procambarus. Crayfish resemble lobsters, but are usually much smaller. Astacus,Crayfish,Procambarus,Astacoideas,Crayfishs
D005728 Ganglia, Sympathetic Ganglia of the sympathetic nervous system including the paravertebral and the prevertebral ganglia. Among these are the sympathetic chain ganglia, the superior, middle, and inferior cervical ganglia, and the aorticorenal, celiac, and stellate ganglia. Celiac Ganglia,Sympathetic Ganglia,Celiac Ganglion,Ganglion, Sympathetic,Ganglia, Celiac,Ganglion, Celiac,Sympathetic Ganglion
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

C Giaume, and R T Kado, and H Korn
November 1984, The Journal of physiology,
C Giaume, and R T Kado, and H Korn
December 1974, Nature,
C Giaume, and R T Kado, and H Korn
September 1981, Federation proceedings,
C Giaume, and R T Kado, and H Korn
April 1983, Science (New York, N.Y.),
C Giaume, and R T Kado, and H Korn
February 1998, The Journal of experimental biology,
C Giaume, and R T Kado, and H Korn
February 1992, Journal of neurocytology,
C Giaume, and R T Kado, and H Korn
September 1980, Pflugers Archiv : European journal of physiology,
C Giaume, and R T Kado, and H Korn
March 1990, Journal of neurophysiology,
C Giaume, and R T Kado, and H Korn
September 1980, Journal de physiologie,
C Giaume, and R T Kado, and H Korn
November 1978, The Journal of physiology,
Copied contents to your clipboard!