| D007295 |
Inositol Phosphates |
Phosphoric acid esters of inositol. They include mono- and polyphosphoric acid esters, with the exception of inositol hexaphosphate which is PHYTIC ACID. |
Inositol Phosphate,Phosphate, Inositol,Phosphates, Inositol |
|
| D008099 |
Liver |
A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. |
Livers |
|
| D011956 |
Receptors, Cell Surface |
Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. |
Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell |
|
| D002118 |
Calcium |
A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. |
Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation |
|
| D006493 |
Heparin |
A highly acidic mucopolysaccharide formed of equal parts of sulfated D-glucosamine and D-glucuronic acid with sulfaminic bridges. The molecular weight ranges from six to twenty thousand. Heparin occurs in and is obtained from liver, lung, mast cells, etc., of vertebrates. Its function is unknown, but it is used to prevent blood clotting in vivo and vitro, in the form of many different salts. |
Heparinic Acid,alpha-Heparin,Heparin Sodium,Liquaemin,Sodium Heparin,Unfractionated Heparin,Heparin, Sodium,Heparin, Unfractionated,alpha Heparin |
|
| D000252 |
Calcium-Transporting ATPases |
Cation-transporting proteins that utilize the energy of ATP hydrolysis for the transport of CALCIUM. They differ from CALCIUM CHANNELS which allow calcium to pass through a membrane without the use of energy. |
ATPase, Calcium,Adenosinetriphosphatase, Calcium,Ca(2+)-Transporting ATPase,Calcium ATPase,Calcium Adenosinetriphosphatase,Adenosine Triphosphatase, Calcium,Ca2+ ATPase,Calcium-ATPase,ATPase, Ca2+,ATPases, Calcium-Transporting,Calcium Adenosine Triphosphatase,Calcium Transporting ATPases,Triphosphatase, Calcium Adenosine |
|
| D000818 |
Animals |
Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. |
Animal,Metazoa,Animalia |
|
| D001693 |
Biological Transport, Active |
The movement of materials across cell membranes and epithelial layers against an electrochemical gradient, requiring the expenditure of metabolic energy. |
Active Transport,Uphill Transport,Active Biological Transport,Biologic Transport, Active,Transport, Active Biological,Active Biologic Transport,Transport, Active,Transport, Active Biologic,Transport, Uphill |
|
| D013403 |
Sugar Phosphates |
|
Phosphates, Sugar |
|
| D015220 |
Calcium Channels |
Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue. |
Ion Channels, Calcium,Receptors, Calcium Channel Blocker,Voltage-Dependent Calcium Channel,Calcium Channel,Calcium Channel Antagonist Receptor,Calcium Channel Antagonist Receptors,Calcium Channel Blocker Receptor,Calcium Channel Blocker Receptors,Ion Channel, Calcium,Receptors, Calcium Channel Antagonist,VDCC,Voltage-Dependent Calcium Channels,Calcium Channel, Voltage-Dependent,Calcium Channels, Voltage-Dependent,Calcium Ion Channel,Calcium Ion Channels,Channel, Voltage-Dependent Calcium,Channels, Voltage-Dependent Calcium,Voltage Dependent Calcium Channel,Voltage Dependent Calcium Channels |
|